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Today's Schedule

Perceptron (recap)

@ Perceptron (recap)

© Problems with Perceptron
© Extensions of Perceptron

0 Training of a single-layer neural network
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@ Input-to-output function
ax) =wix+w = w'x
where w = (wo, w')7, x=(1,x")"
xp=1
y(%) =g(a(x)) = g(w'x)
where g(a) = { (1): Iiffii%

g(a): activation/transfer function
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x> x3— 1
ax)=1—x+x
= Wo+wix1+waxe

wo=1lmwm=—-1w=1

Geometry of Perceptron’s error correction

Geometry of Perceptron’s error correction (cont)

Geometry of Perceptron’s error correction (cont)

y(xi) = g(w’x;)

y(xi) = g(wx)

y(xi) = g(w'x;)
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Perceptron structures and decision boundaries

Limitations of Perceptron

A limitation of Perceptron

"

Question: Find the weights for each network
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o Single-layer perceptron is just a linear classifier
(Marvin Minsky and Seymour Papert, 1969)

@ Multi-layer perceptron can form complex decision
boundaries (piecewise-linear), but it is hard to train

@ Training does not stop if data are linearly non-separable

o Weights w are adjusted for misclassified data only
(correctly classified data are not considered at all)
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y =gw'x) 2 = gwiTx) = g(wi}x + wipheo + wiy)
2 = g(wi) Tx) = g(wi} 1 + wiphxo + why)
2 2 2
y = gw®T2) = g(widzy + w3z + i)
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Choices of decision boundaries

How can we resolve the problem of training?

How can we resolve the problem of training?(cont)
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@ Use the least squares error criterion for training
N

Exy(w) = Z(YH —ty )2
n=1
@ Replace g() with a differentiable function
What about removing g( ) in the hidden layer?

I(l)'r 7= WI(l)TX

zi=g(w;"'"'x) =

& &
/ - OO
.t

Question: Show networks with linear hidden nodes reduce to

single-layer networks
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o Replace g() with a differentiable non-linear function

e.g., Logistic sigmoid function:
1

1+ exp(—a)

1
g(a) = 14+e2

g(a) =1/ (1+exp(-a)

Mapping: (—o0,4+00) — (0,1)

9 4(2) = &'() = &(a)(1 ()
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Single Layer Neural Network

Single Layer Neural Network (cont)

Training of single layer neural network

Assume a single-layer neural network with a single output node
with a logistic sigmoid function:

o Training set : D = {(x1,t1), ..., (Xn, tn)}
where t; € {0,1}
@ Error function:

E(W): (ynftn)2

3
1
kN

Nl= N
M= 1=

(g(w'x,) — t,,)2

(s(Eme)-2)

@ Definition of the training problem as an optimisation
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o Optimisation problem: min E(w)
w
@ No analytic solution

o Employ an iterative method (requires initial values)
e.g. Gradient descent (steepest descent), Newton's
method, Conjugate gradient methods

@ Gradient descent
(scalar rep.)

Wi("ew) — w,—7 aWiE(W), (n>0)
(vector rep.)
w™) W -V, E(w), (n>0)

problem @ Online/stochastic gradient descent (cf. Batch training)
min E(w) Update the weights one pattern at a time. (See Note 11)
w
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Gradient descent Local minimum problem with the gradient descent | Training of the single-layer neural network
1 N ) 1 N D 2
new 0 new 0 E(W) == (}/n - tn) = = g WiXpi | — th
W D), (0> 0) W D), (0> 0) 22 22\ 5\ %
E E 0an
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Another training criterion — cross-entropy error

Other activation functions )

Exercise

@ Training problem with the mean squared error (MSE)
criterion with the sigmoid function

—

Eusc(w ):Eﬁw )

@ Tanh

gla) = tannia)

e—2a

1—-
— tanh = 05
g(a) = tanh(a) 11 e2a

@ Show networks with linear nodes in all hidden layers
reduce to single-layer networks.

@ Prove that the derivative of the logistic sigmoid function
g(a) is given as g'(a) = g(a) (1 — g(a)), and sketch the
graph of it.

0 Emse(w N , e Mapping (—oc0, +00) — (—1,1) e o0 E e e
aw Z:l —tn) g'(an) Xni,  £'(2) = g(a)(1 - g(a)) o 0 (zero) centred — faster convergence than S\gmmd © Explain about the learning rate 7 for the gradient descent
B method.
~ ! ~ . . ..
For such a that g(a) ~ 0 or 1, g'(a) ~ 0. - . . @ Explain the problem with the training of a neural network
o Cross-entropy error (NE) ® ReLU (Rectified Linear Unit) with the MSE criterion when the sigmoid function is used
) 1N ( Jin ) g(a) = max(0, a) as the activation function.
w)=—— tyIny, + (1—t,) In(1—y, )
’V; e " ! o Several times faster than tanh. ) © (ne) Prove that the partial derivative of the cross-entropy
It can be shown that: e 'Dying ReLU’ problem — a unit of outputting 0 always error is given as
0 EH(W) 1 ul d EH
=N (yn - tn) Xnj = Z - t,., Xnpi -
8 w;j N 1 a w; N —1
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Summary

@ Limitations of Perceptron
@ Solutions to the problems

o Neural network with differentiable non-linear functions
(e.g. logistic sigmoid function)

@ Training of the network with the gradient descent
algorithm

o Considered only a single-layer network with a
single-output node

o A very good reference:
http://neuralnetworksanddeeplearning.com/
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