Inf2b - Learning

Lecture 11: Single layer Neural Networks (1)

Hiroshi Shimodaira (Credit: Iain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR)
School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/inf2b/ https://piazza.com/ed.ac.uk/spring2020/infr08028 Office hours: Wednesdays at 14:00-15:00 in IF-3.04

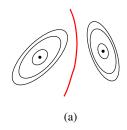
Jan-Mar 2020

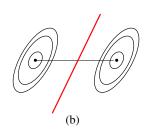
Today's Schedule

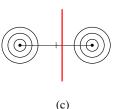
- Discriminant functions (recap)
- Decision boundary of linear discriminants (recap)
- 3 Discriminative training of linear discriminans (Perceptron)
- Structures and decision boundaries of Perceptron
- 5 LSE Training of linear discriminants
- 6 Appendix calculus, gradient descent, linear regression

Discriminant functions (recap)

$$egin{aligned} y_k(m{x}) &= \ln \left(P(m{x} | m{C}) P(m{C}_k)
ight) \ &= -rac{1}{2} (m{x} - m{\mu}_k)^T m{\Sigma}_k^{-1} (m{x} - m{\mu}_k) - rac{1}{2} \ln |m{\Sigma}_k| + \ln P(m{C}_k) \ &= -rac{1}{2} m{x}^T m{\Sigma}_k^{-1} m{x} + m{\mu}_k^T m{\Sigma}_k^{-1} m{x} - rac{1}{2} m{\mu}_k^T m{\Sigma}_k^{-1} m{\mu}_k - rac{1}{2} \ln |m{\Sigma}_k| + \ln P(m{C}_k) \end{aligned}$$







Linear discriminants for a 2-class problem

$$y_1(x) = w_1^T x + w_{10}$$

 $y_2(x) = w_2^T x + w_{20}$

Combined discriminant function:

$$y(x) = y_1(x) - y_2(x) = (w_1 - w_2)^T x + (w_{10} - w_{20})$$

= $w^T x + w_0$

Decision:

$$C = \begin{cases} 1, & \text{if } y(x) \ge 0, \\ 2, & \text{if } y(x) < 0 \end{cases}$$

Decision boundary of linear discriminants

Decision boundary:

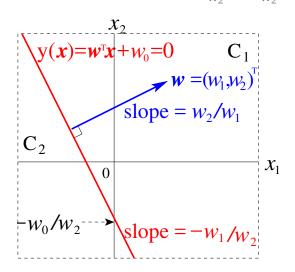
$$y(x) = w^T x + w_0 = 0$$

Dimension	Decision boundary		
2	line	$w_1x_1 + w_2x_2 + w_0 = 0$	
3	plane	$w_1x_1 + w_2x_2 + w_3x_3 + w_0 = 0$	
D	hyperplane	$\left(\sum_{i=1}^D w_i x_i\right) + w_0 = 0$	

NB: w is a normal vector to the hyperplane

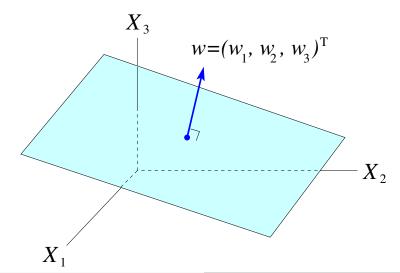
Decision boundary of linear discriminant (2D)

$$y(x) = w_1x_1 + w_2x_2 + w_0 = 0$$
 $(x_2 = -\frac{w_1}{w_2}x_1 - \frac{w_0}{w_2}, \text{ when } w_2 \neq 0)$



Decision boundary of linear discriminant (3D)

$$y(x) = w_1x_1 + w_2x_2 + w_3x_3 + w_0 = 0$$



Approach to linear discminant functions

Generative models : $p(\mathbf{x}|C_k)$

Discriminant function based on Bayes decision rule

$$y_k(\mathbf{x}) = \ln p(\mathbf{x}|C_k) + \ln P(C_k)$$

↓ Gaussian pdf (model)

$$y_k(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k) - \frac{1}{2} \ln |\boldsymbol{\Sigma}_k| + \ln P(C_k)$$

 \downarrow Equal covariance assumption

$$y_k(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

 \uparrow Why not estimating the decision boundary or $P(C_k|\mathbf{x})$ directly?

Discriminative training / models

(Logistic regression, Percepton / Neural network, SVM)

Training linear discriminant functions directly

• A discriminant for a two-class problem:

Inf2b - Learning: Lecture 11

$$y(x) = y_{1}(x) - y_{2}(x) = (w_{1} - w_{2})^{T}x + (w_{10} - w_{20})$$

$$= w^{T}x + w_{0}$$

$$X_{2} \qquad 0$$

$$X_{3} \qquad X_{4} \qquad X_{5}$$

$$X_{4} \qquad X_{5} \qquad X_{7}$$

$$X_{6} \qquad X_{1} \qquad X_{1}$$

Perceptron error correction algorithm

$$a(\dot{\mathbf{x}}) = \mathbf{w}^T \mathbf{x} + w_0 = \dot{\mathbf{w}}^T \dot{\mathbf{x}}$$

where $\dot{\mathbf{w}} = (w_0, \mathbf{w}^T)^T$, $\dot{\mathbf{x}} = (1, \mathbf{x}^T)^T$

Let's just use \mathbf{w} and \mathbf{x} to denote $\dot{\mathbf{w}}$ and $\dot{\mathbf{x}}$ from now on!

$$y(x) = g(a(x)) = g(w^T x)$$
 where $g(a) = \begin{cases} 1, & \text{if } a \ge 0, \\ 0, & \text{if } a < 0 \end{cases}$
 $g(a)$: activation / transfer function

- Training set : $\mathcal{D}=\{(\mathbf{x}_1,t_1),\ldots,(\mathbf{x}_N,t_N)\}$ where $t_i\in\{0,1\}$: target value
- Modify \boldsymbol{w} if \mathbf{x}_i was misclassified $\boldsymbol{w}^{(\text{new})} \leftarrow \boldsymbol{w} + \eta \left(t_i y(\mathbf{x}_i)\right) \mathbf{x}_i$ $(0 < \eta < 1)$ NB:

$$(\mathbf{w}^{(\text{new})})^T \mathbf{x}_i = \mathbf{w}^T \mathbf{x}_i + \eta (t_i - y(\mathbf{x}_i)) \|\mathbf{x}_i\|^2$$

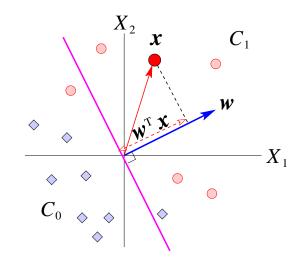
Geometry of Perceptron's error correction

$$y(\mathbf{x}_i) = g(\mathbf{w}^T \mathbf{x}_i)$$

$$\mathbf{w}^{(\text{new})} \leftarrow \mathbf{w} + \eta (\mathbf{t}_i - y(\mathbf{x}_i)) \mathbf{x}_i \qquad (0 < \eta < 1)$$

$t_i - y($	x_i)	<i>y</i> (0	(x _i)
t _i	0	0	-1
	1	1	0

 $\mathbf{w}^T \mathbf{x} = \|\mathbf{w}\| \|\mathbf{x}\| \cos \theta$



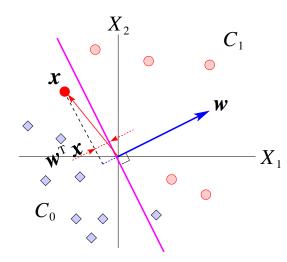
Geometry of Perceptron's error correction (cont.)

$$y(\mathbf{x}_i) = g(\mathbf{w}^T \mathbf{x}_i)$$

$$\mathbf{w}^{(\text{new})} \leftarrow \mathbf{w} + \eta (\mathbf{t}_i - \mathbf{y}(\mathbf{x}_i)) \mathbf{x}_i \qquad (0 < \eta < 1)$$

$t_i - y($	x_i)	y(0	(\mathbf{x}_i)
	0	0	-1
t _i	1	1	0

 $\mathbf{w}^T \mathbf{x} = \|\mathbf{w}\| \|\mathbf{x}\| \cos \theta$



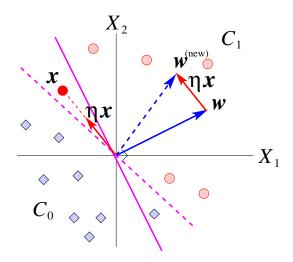
Geometry of Perceptron's error correction (cont.)

$$y(\mathbf{x}_i) = g(\mathbf{w}^T \mathbf{x}_i)$$

$$\mathbf{w}^{(\text{new})} \leftarrow \mathbf{w} + \eta (\mathbf{t}_i - y(\mathbf{x}_i)) \mathbf{x}_i \qquad (0 < \eta < 1)$$

$t_i-y($	y(0	(\mathbf{x}_i)	
t _i	0	0	-1
	1	1	0

 $\mathbf{w}^T \mathbf{x} = \|\mathbf{w}\| \|\mathbf{x}\| \cos \theta$



The Perceptron learning algorithm

Incremental (online) Perceptron algorithm:

for
$$i = 1, ..., N$$

 $\mathbf{w} \leftarrow \mathbf{w} + \eta (t_i - y(\mathbf{x}_i)) \mathbf{x}_i$

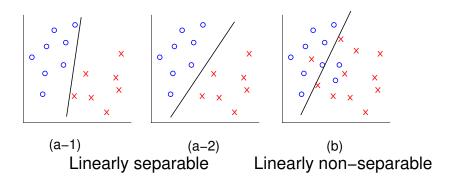
Batch Perceptron algorithm:

$$egin{aligned} \mathbf{v}_{sum} &= \mathbf{0} \ ext{for } i = 1, \dots, \mathcal{N} \ \mathbf{v}_{sum} &= \mathbf{v}_{sum} + \left(t_i - y(\mathbf{x}_i)\right) \mathbf{x}_i \ \mathbf{w} &\leftarrow \mathbf{w} + \eta \, \mathbf{v}_{sum} \end{aligned}$$

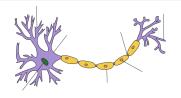
What about convergence?

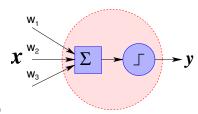
The Perceptron learning algorithm terminates if training samples are linearly separable.

Linearly separable vs linearly non-separable



Background of Perceptron





(https://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.svg)

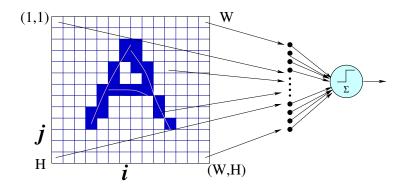
(a) function unit

1940s Warren McCulloch and Walter Pitts: 'threshold logic'

Donald Hebb: 'Hebbian learning'

1957 Frank Rosenblatt: 'Perceptron'

Character recognition by Perceptron



$$y(x) = g(a(x)) \qquad w = (w_0, w_1, \dots, w_D)^T$$

$$= g(w^T x) \qquad x = (1, x_1, \dots, x_D)^T$$
where $g(a) = \begin{cases} 1, & \text{if } a \ge 0, \\ 0, & \text{if } a < 0 \end{cases}$

$$x_2 \ge x_1 - 1$$

$$a(x) = 1 - x_1 + x_2$$

$$= w_0 + w_1 x_1 + w_2 x_2$$

NB: A one node/neuron constructs a decision boundary, which splits the input space into two regions

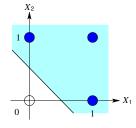
Perceptron as a logical function

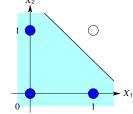
NOT			
<i>x</i> ₁	У		
0	1		
1	0		

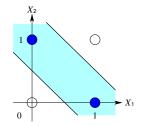
OR			
x_1	<i>x</i> ₂	У	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

NAND			
<i>x</i> ₁	<i>x</i> ₂	y	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

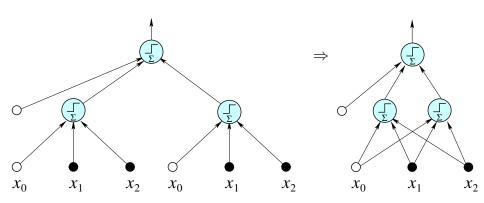
XOR			
x_1	<i>x</i> ₂	y	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

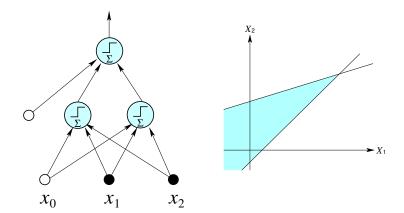


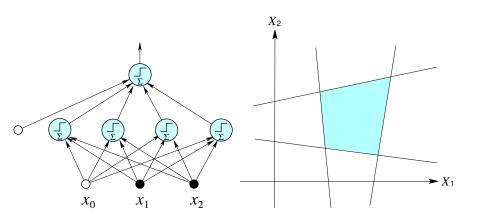


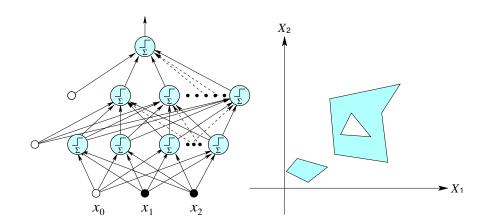


Question: find the weights for each function









Problems with the Perceptron learning algorithm

- No training algorithms for multi-layer Percepton
- Non-convergence for linearly non-separable data
- Weights w are adjusted for misclassified data only (correctly classified data are not considered at all)

 \Rightarrow

- Consider not only mis-classification (on train data), but also the optimality of decision boundary
 - Least squares error training
 - Large margin classifiers (e.g. SVM)

Training with least squares

Squared error function:

$$E(\boldsymbol{w}) = \frac{1}{2} \sum_{n=1}^{N} (\boldsymbol{w}^{T} \boldsymbol{x}_{n} - t_{n})^{2}$$

Optimisation problem:

$$\min_{\mathbf{w}} E(\mathbf{w})$$

 One way to solve this is to apply gradient descent (steepest descent):

$$m{w} \leftarrow m{w} - \eta \ \nabla_{m{w}} \ E(m{w})$$
 where η : step size (a small positive const.)
$$\nabla_{m{w}} \ E(m{w}) = \left(\frac{\partial E}{\partial w_0}, \dots \frac{\partial E}{\partial w_D}\right)^T$$

Training with least squares (cont.)

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^T \mathbf{x}_n - t_n)^2$$

$$= \sum_{n=1}^{N} (\mathbf{w}^T \mathbf{x}_n - t_n) \frac{\partial}{\partial w_i} \mathbf{w}^T \mathbf{x}_n$$

$$= \sum_{n=1}^{N} (\mathbf{w}^T \mathbf{x}_n - t_n) x_{ni}$$

- Trainable in linearly non-separable case
- Not robust (sensitive) against errornous data (outliers) far away from the boundary
- More or less a linear discriminant

Appendix – derivatives

Derivatives of functions of one variable

$$\frac{\mathrm{d}f}{\mathrm{d}x} = f'(x) = \lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x)}{\epsilon}$$

e.g.,
$$f(x) = 4x^3$$
, $f'(x) = 12x^2$

• Partial derivatives of functions of more than one variable

$$\frac{\partial f}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x + \epsilon, y) - f(x, y)}{\epsilon}$$

e.g.,
$$f(x,y) = y^3 x^2$$
, $\frac{\partial f}{\partial x} = 2y^3 x$

Derivative rules

	Function	Derivative
Constant		0
Constant	С	· ·
	X	1
Power	χ^n	$n \times^{n-1}$
	$\frac{1}{x}$	$-\frac{1}{x^2}$
	\sqrt{x}	$\frac{1}{2}x^{-\frac{1}{2}}$
Exponential	e^{x}	e^{x}
Logarithms	ln(x)	$\frac{1}{x}$
Sum rule	f(x) + g(x)	f'(x) + g'(x)
Product rule	f(x)g(x)	f'(x)g(x) + f(x)g'(x)
Reciprocal rule	$\frac{1}{f(x)}$	$-\frac{f'(x)}{f^2(x)}$
	$\frac{f(x)}{g(x)}$	$-\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}$
Chain rule	f(g(x))	f'(g(x))g'(x)
	z = f(y), y = g(x)	$\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\mathrm{d}z}{\mathrm{d}y} \frac{\mathrm{d}y}{\mathrm{d}x}$

Vectors of derivatives

Consider
$$f(x)$$
, where $x = (x_1, ..., x_D)^T$

Notation: all partial derivatives put in a vector:

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \cdots, \frac{\partial f}{\partial x_D}\right)^T$$

Example: $f(x) = x_1^3 x_2^2$

$$\nabla_{\mathbf{x}}f(\mathbf{x}) = \begin{pmatrix} 3x_1^2x_2^2 \\ 2x_1^3x_2 \end{pmatrix}$$

Fact: f(x) changes most quickly in direction $\nabla_x f(x)$

Gradient descent (steepest descent)

- First order optimisation algorithm using $\nabla_x f(x)$
- Optimisation problem: $\min_{x} f(x)$
- Useful when analytic solutions (closed forms) are not available or difficult to find
- Algorithm
 - **1** Set an initial value x_0 and set t = 0
 - ② If $\|\nabla_{\mathbf{x}} f(\mathbf{x}_t)\| \simeq 0$, then stop. Otherwise, do the following.
 - $3 x_{t+1} = x_t \eta \nabla_x f(x_t) for \eta > 0$
 - \bullet t = t + 1, and go to step 2.
- Problem: stops at a local minimum (difficult to find a global maximum).

Linear regression (one variable) least squares line fitting

- Training set: $\mathcal{D} = \{(x_n, t_n)\}_{n=1}^N$
- Linear regression: $\hat{t}_n = ax_n + b$
- Objective function: $E = \sum_{i=1}^{N} (t_i (ax_i + b))^2$
- Optimisation problem: $\min_{a,b} E$
- Partial derivatives:

$$\frac{\partial E}{\partial a} = 2\sum_{n=1}^{N} ((t_i - (ax_i + b))(-x_i))$$

$$= 2a\sum_{n=1}^{N} x_i^2 + 2b\sum_{n=1}^{N} x_i - 2\sum_{n=1}^{N} t_i x_i$$

$$\frac{\partial E}{\partial b} = -2\sum_{n=1}^{N} ((t_i - (ax_i + b)))$$

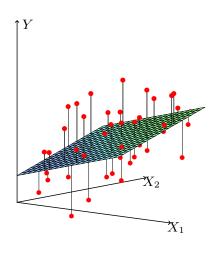
$$= 2a\sum_{n=1}^{N} x_i + 2b\sum_{n=1}^{N} 1 - 2\sum_{n=1}^{N} t_i$$

Linear regression (one variable) (cont.)

Letting
$$\frac{\partial E}{\partial a} = 0$$
 and $\frac{\partial E}{\partial b} = 0$

$$\begin{pmatrix} \sum_{n=1}^{N} x_i^2 & \sum_{n=1}^{N} x_i \\ \sum_{n=1}^{N} x_i & \sum_{n=1}^{N} 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \sum_{n=1}^{N} t_i x_i \\ \sum_{n=1}^{N} t_i \end{pmatrix}$$

Linear regression (multiple variables)



- Training set: $\mathcal{D} = \{(\mathbf{x}_n, t_n)\}_{n=1}^N, \text{ where } \mathbf{x}_n = (1, x_1, \dots, x_D)^T$
- Linear regression: $\hat{t}_n = \mathbf{w}^T \mathbf{x}_n$
- Objective function:

$$E = \sum_{n=1}^{N} (t_n - \boldsymbol{w}^T \boldsymbol{x}_n)^2$$

Optimisation problem:
 min E
 a.b

Elements of Statistical Learning (2nd Ed.) © Hastie, Tibshirani & Friedman 2009

Linear regression (multiple variables) (cont.)

$$\bullet E = \sum_{n=1}^{N} (t_n - \mathbf{w}^T \mathbf{x}_n)^2$$

- Partial derivatives: $\frac{\partial E}{\partial w_i} = -2\sum_{n=1}^{N} (t_n \mathbf{w}^T \mathbf{x}_n) x_{ni}$
- Vector/matrix representation (NE):

$$X = \begin{bmatrix} \mathbf{x}_1^T \\ \vdots \\ \mathbf{x}_N^T \end{bmatrix} = \begin{bmatrix} x_{10}, \dots, x_{1d} \\ \vdots & \vdots \\ x_{N0}, \dots, x_{Nd} \end{bmatrix}, T = \begin{bmatrix} t_1 \\ \vdots \\ t_N \end{bmatrix}$$
$$E = (T - X\mathbf{w})^T (T - X\mathbf{w})$$
$$\frac{\partial E}{\partial \mathbf{w}} = -2X^T (T - XW)$$

Letting
$$\frac{\partial E}{\partial w} = \mathbf{0} \implies X^T (T - XW) = \mathbf{0}$$

 $X^T XW = X^T T$

 $W = (X^T X)^{-1} X^T T$... analytic solution if the inverse exists

Summary

- Training discriminant functions directly (discriminative training)
- Perceptron training algorithm
 - Perceptron error correction algorithm
 - Least squares error + gradient descent algorithm
- Linearly separable vs linearly non-separable
- Perceptron structures and decision boundaries
- See Notes 11 for a Perceptron with multiple output nodes