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Today's Schedule

@ Discriminant functions (recap)

© Decision boundary of linear discriminants (recap)

© Discriminative training of linear discriminans (Perceptron)
@ Structures and decision boundaries of Perceptron

© LSE Training of linear discriminants

e Appendix - calculus, gradient descent, linear regression
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Discriminant functions (recap)

ye(x) = In (P(x| C)P(C))
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Linear discriminants for a 2-class problem

yl(X) = WlTX + W1o

yQ(X) = W2TX + Wao

Combined discriminant function:

y(x) = y1(x) — ya(x) = (w1 — wa) " x + (w10 — wap)
=w'x + Wy
Decision:
c 1, if y(x) >0,
] 2, ify(x)<0
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Decision boundary of linear discriminants

@ Decision boundary:

y(x)=w'x+w=0

Dimension | Decision boundary
2 line wixy + Woxo + wy =0
3 plane WiXp + WoXo + Waxz + wy = 0
D hyperplane (322, wix;) +wp =0

NB: w is a normal vector to the hyperplane
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Decision boundary of linear discriminant (2D)

y(X):W1X1+W2X2+W0:0 (X2:—7X1i77

141 Wo
Wo [1%)

/ w =W ’Wz)T

slope = w,/w,
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Decision boundary of linear discriminant (3D)

y(x) = wixy + waxa + waxs + wp =0

X,
W=(W1’ W W3)T

X,
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Approach to linear discminant functions

Generative models : p(x|Cy)
Discriminant function based on Bayes decision rule
ye(x) = Inp(x|Cy) + In P(Cy)
1 Gaussian pdf (model)

1 1
ye(x) = —§(X — ) T (x = ) — 5 In |2+ In P(Cy)

J Equal covariance assumption
Vie(x) =wx + wp

1 Why not estimating the decision boundary
or P(Cy|x) directly?

Discriminative training / models
(Logistic regression, Percepton / Neural network, SVM)
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Training linear discriminant functions directly

@ A discriminant for a two-class problem:

y(x) = y1(x) — ya(x) = (w1 — wi) " x + (wip — wao)

= w'x + wy
X2
A © «
o ©
o X
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(e} X X
X
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> X4
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X2 (@)
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Perceptron error correction algorithm

a(X) = WTx +w = WTX
where w = (wp, w')", x=(1,x")"
Let’s just use w and x to denote w and x from now on!
y(x)=g(a(x)) = g(w'x) _ 1, ifa>0,
where g(a) =1 0, ifa<o0

g(a): activation / transfer function
e Training set : D = {(xq, t1), ..., (Xn, tn)}
where t; € {0,1} : target value

e Modify w if x; was misclassified

w) o w (- y(x)) x; (0<n<1)
\B. learning rate

(W N Tx; = wx; + 1 (8 — y(x)) [|xi]]?
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Geometry of Perceptron’s error correction

y(xi) = g(w'x))
W(new) — w+rn (t,- — y(X,-))X,' (O <n< 1)

X,
P x C,
y(xi)
tl_y(xl) 0 1 . O
, 0]0 -1 o
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Geometry of Perceptron’s error correction (cont)

y(xi) = g(w'x))

WO w (5 y(x) %

(0<n<1)

)’(Xi) o
ti—y(x;)
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Geometry of Perceptron’s error correction (cont)

y(xi) = g(w'x))
W(new) — w+rn (t,- — y(X,-))X,' (O <n< 1)

y(x;)
tl_y(xl) N
01 “x
' 0|0 -1 N
111 0 '
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X,
wlx = |w||||x|| cos @ ©
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The Perceptron learning algorithm

Incremental (online) Perceptron algorithm:

fori=1,...,N
w o w + (5 — y(x))x;

Batch Perceptron algorithm:
Vsum = 0
fori=1,....N

Voum = Veum + (ti - )/(xi)) X
w — w + 1N Vsum

What about convergence?
The Perceptron learning algorithm terminates if training

samples are linearly separable.
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Linearly separable vs linearly non-separable

o o
o o
o X
(¢}
o X X
o X X X
X
(a-1) (a-2) (b)
Linearly separable Linearly non-separable
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Background of Perceptron

(a) fu&ﬁl}n unit
1940s  Warren McCulloch and Walter Pitts : "threshold logic’

Donald Hebb : "Hebbian learning’
1957  Frank Rosenblatt : 'Perceptron’

Perceptron|

40N

(https://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.svg)

v

(
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Character recognition by Perceptron

(LD
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Perceptron structures and decision boundaries

y(x) = g(a(x)) w = (wo, wy,..., wp) T
:g(WTX) X—(]..Xl,....XD)T
1, ifa>0,
where g(a) { 0 ifa<o
X2
X2 ZXl—].
ax)=1-x1+x
0 WA = Wo+wix1+waxp
wo=1l,wi=—1,wr=1
xo xl xz By X

NB: A one node/neuron constructs a decision boundary, which
splits the input space into two regions
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Perceptron as a logical function

NOT OR NAND XOR
Xy X1 | X |y X1 | X2 |y X1 | X2 |y
0|1 0,010 01011 0[0]|0
110 0|11 0|11 0|11
1101 1101 1101
1111 11110 11110

Question: find the weights for each function
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Perceptron structures and decision boundaries (cont.)
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Perceptron structures and decision boundaries (cont.)
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Perceptron structures and decision boundaries (cont.)
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Perceptron structures and decision boundaries (cont.)

> X1
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Problems with the Perceptron learning algorithm

e No training algorithms for multi-layer Percepton
@ Non-convergence for linearly non-separable data

@ Weights w are adjusted for misclassified data only
(correctly classified data are not considered at all)

=
@ Consider not only mis-classification (on train data), but
also the optimality of decision boundary

e Least squares error training

e Large margin classifiers (e.g. SVM)

Inf2b - Learning: Lecture 11 Single layer Neural Networks (1)

24



Training with least squares

@ Squared error function:
1 N

LY (Wi - t)’

n=1

E(w)

@ Optimisation problem:
mMiIn E(w)
@ One way to solve this is to apply gradient descent
(steepest descent):
w +— w-nV,E(w)
where 1 : step size (a small positive const.)

0E  OE Y\
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Training with least squares (cont)

OE 01 - 2
— = 5= w’'x,—t,

1

(WTx,, — t,,) aT/,-WTX”

I
M=

1

3
Il

(WTX,, — t,,) Xni

I
™=

1

3
Il

@ Trainable in linearly non-separable case

@ Not robust (sensitive) against errornous data (outliers) far
away from the boundary

@ More or less a linear discriminant
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Appendix — derivatives

@ Derivatives of functions of one variable
f f —f

4F i) = fim fXEO = F)

dx e—0 €

e.g., f(x)=4x3 f/(x)=12x°

@ Partial derivatives of functions of more than one variable
of . flx+ey)—Ff(xy)
— = |im
8x e—0 €

e.g., f(x,y) = y3x%, % = 2y°x
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Derivative rules

Function Derivative
Constant C 0
X 1
Power x" nx"1
1 _1
VX 3x2
Exponential eX eX
Logarithms In(x) %
Sum rule f(x)+g(x) f'(x) + g'(x)
Product rule f(x)g(x) f'(x)g(x) + f(x)g’(x)
Reciprocal rule ﬁ - ;;((f())
f(x) _ f'(x)g(x)—f(x)g’(x)
g(x) g°(x)
Chain rule f(g(x)) f'(g(x))g’(x)
z=f(y).y = g(x) E=EE
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Vectors of derivatives

Consider f(x), where x = (xq,...,xp)"

Notation: all partial derivatives put in a vector:
of Of of \7
fo = \3_ 5 """ »4a__
(X) <8x1 8X2 aXD)

Example: f(x) = x3x3

3xPx3
Vxf(x) =
2x3x
Fact: f(x) changes most quickly in direction V,f(x)
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Gradient descent (steepest descent)

@ First order optimisation algorithm using V,f(x)
@ Optimisation problem: min, f(x)

@ Useful when analytic solutions (closed forms) are not
available or difficult to find

@ Algorithm
@ Set an initial value xg and set t =0

Q If ||[Vxf(x¢)|| = 0, then stop. Otherwise, do the
following.

Q xep1=x: —nVxf(xe) forn>0
Q@ t=1t+1, and go to step 2.

@ Problem: stops at a local minimum (difficult to find a
global maximum).
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Linear regression (one variable) least squares line fitting

o Training set: D = {(x,, t,)}_,
@ Linear regression: t, = ax, + b

N
o Objective function: E = 3" (t; — (ax; + b))°

n=1

@ Optimisation problem: min E

a,b

@ Partial derivatives:

g’j =23 (8 — (2 + ) ()

N N N
= QQZXiZ —I—QbZX,' — 22 tix;
n=1 n=1 n=1

oE N
55 = —2; ((ti — (ax; + b))

N N N
:2aZx,-+2bZl —2Zt,-
n=1 n=1 n=1
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Linear regression (one variable) (cont)

. OE 0E
Letting 55 = 0 and 5 = 0

ZnN:I Xi2 221:1 Xj a ) _ ZL tix;
Zrl:lzl Xi ZnNzl 1 b 27:1 t;
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Linear regression (multiple variables)

Y

@ Training set:
D = {(x, t,,)},lyzl, where
xn = (1, x1,...,xp)"

@ Linear regression:
t,=w'x,

° Objective function:

E=3 (6 wi)’

° Opt|m|sat|on problem:

min E
a,b

Elements of Statistical Learning (2nd Ed.) (© Hastie, Tibshirani & Friedman 2009
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Linear regression (multiple variables) (cont)

N

o E= Z (t,, — WTx,,)2
n=1
. o 0E N T
@ Partial derivatives: B =2 (th — W' Xp)Xpi
Wi n=1
@ Vector/matrix representation (NE) :
XlT X10, - -+, X1d t1
X = : = ; : , T = :
XI;,I- XNQs - - -5 XNd tn
E=(T—Xw) (T —Xw)
OE
—— = 2XT(T — XW
ow ( )
Letting 2£ =0 = XT(T — XW) =0
XTXW =XTT
W=(X"X)"x"T -+ analytic solution if the inverse exists
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Summary

Training discriminant functions directly (discriminative
training)

(]

Perceptron training algorithm

e Perceptron error correction algorithm
o Least squares error 4+ gradient descent algorithm

(]

Linearly separable vs linearly non-separable

Perceptron structures and decision boundaries

See Notes 11 for a Perceptron with multiple output nodes
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