Inf2b - Learning

Lecture 10: Discriminant functions

Hiroshi Shimodaira (Credit: Iain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR)
School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/inf2b/ https://piazza.com/ed.ac.uk/spring2020/infr08028 Office hours: Wednesdays at 14:00-15:00 in IF-3.04

Jan-Mar 2020

Today's Schedule

Decision Regions

Decision Boundaries for minimum error rate classification

Oiscriminant Functions

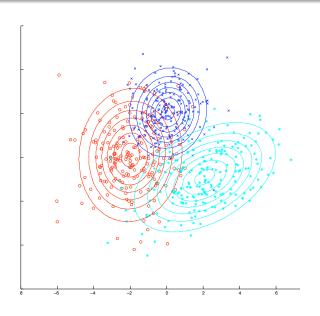
Decision regions

Recall Bayes' Rule:

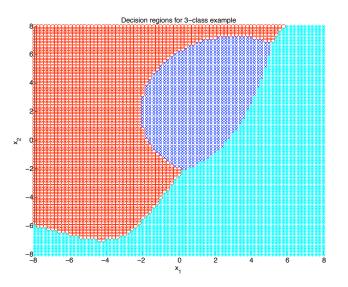
$$P(C_k|x) = \frac{p(x|C_k)P(C_k)}{p(x)}$$

- Given an unseen point x, we assign to the class for which $P(C_k|x)$ is largest. $(k^* = \arg\max_k P(C_k|x))$
- Thus x-space (the input space) may be regarded as being divided into decision regions \mathcal{R}_k such that a point falling in \mathcal{R}_k is assigned to class C_k .
- Decision region \mathcal{R}_k need not be contiguous, but may consist of several disjoint regions each associated with class C_k .
- The boundaries between these regions are called decision boundaries. (Recall the examples of decision boundaries by *k*-NN classification in Chapter 4)

Gaussians estimated from data



Decision Regions



Placement of decision boundaries

- Consider a 1-dimensional feature space (x) and two classes C_1 and C_2 .
- How to place the decision boundary to minimise the probability of misclassification (based on $p(x, C_k)$)?



Decision regions and misclassification

	· ·	
(.on	tusion	matrix

C_1	C_2
N ₁₁	<i>N</i> ₁₂
N_{21}	N_{22}

Normalised version

$$P_{11} + P_{12} = 1$$
$$P_{21} + P_{22} = 1$$

$$P_{11} = P(x \in \mathcal{R}_1 | C_1) = \frac{N_{11}}{N_1}, \quad P_{12} = P(x \in \mathcal{R}_2 | C_1) = \frac{N_{12}}{N_1}$$

$$P_{21} = P(x \in \mathcal{R}_1 | C_2) = \frac{N_{21}}{N_2}, \quad P_{22} = P(x \in \mathcal{R}_2 | C_2) = \frac{N_{22}}{N_2}$$

$$N_1 = N_{11} + N_{12}, \quad N_2 = N_{21} + N_{22}, \quad P(C_1) = \frac{N_1}{N_1 + N_2}, \quad P(C_2) = \frac{N_2}{N_1 + N_2}$$

$$P(\text{correct}) = \frac{N_{11} + N_{22}}{N_1 + N_2} = P_{11} P(C_1) + P_{22} P(C_2)$$

$$P(\text{error}) = \frac{N_{12} + N_{21}}{N_1 + N_2} = P_{12} P(C_1) + P_{21} P(C_2)$$

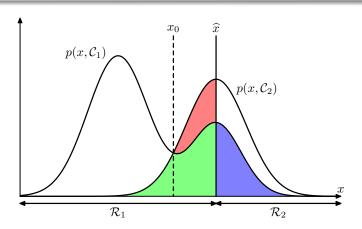
$$= \int_{\mathcal{R}_2} p(x|C_1) P(C_1) dx + \int_{\mathcal{R}_1} p(x|C_2) P(C_2) dx$$

Minimising probability of misclassification

$$P(\operatorname{error}|\mathcal{R}_1,\mathcal{R}_2) = \int_{\mathcal{R}_2} p(x \mid C_1) P(C_1) dx + \int_{\mathcal{R}_1} p(x \mid C_2) P(C_2) dx$$

- If there is $x_e \in \mathcal{R}_2$ such that $p(x_e|C_1)P(C_1) > p(x_e|C_2)P(C_2)$, letting $\mathcal{R}_2^* = \mathcal{R}_2 \{x_e\}$ and $\mathcal{R}_1^* = \mathcal{R}_1 + \{x_e\}$ gives $P(\mathsf{error}|\mathcal{R}_1^*, \mathcal{R}_2^*) < P(\mathsf{error}|\mathcal{R}_1, \mathcal{R}_2)$
- P(error) is minimised by assigning each point to the class with the maximum posterior probability (Bayes decision rule / MAP decision rule / minimum error rate classification).
- This justification for the maximum posterior probability may be extended to D-dimensional feature vectors and K classes

Minimising probability of misclassification (cont.)



After Fig. 1.24, C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006. \hat{x} denotes the current decision boundary, which causes error shown in red, green, and blue regions. The error is minimised by locating the boundary at x_0 .

Discriminant functions

• We can express a classification rule in terms of a discriminant function $y_k(x)$ for each class, such that x is assigned to class C_k if:

$$y_k(\mathbf{x}) > y_\ell(\mathbf{x}) \quad \forall \ \ell \neq k$$

• If we assign x to class C with the highest posterior probability P(C|x), then the log posterior probability forms a suitable discriminant function:

$$y_k(\mathbf{x}) = \ln p(\mathbf{x} \mid C_k) + \ln P(C_k)$$

- Decision boundaries between C_k and C_ℓ are defined when the discriminant functions are equal: $y_k(x) = y_\ell(x)$
- Decision boundaries are not changed by monotonic transformations (such as taking the log) of the discriminant functions.

Discriminant functions for Gaussian pdfs

 What is the form of the discriminant function when using a Gaussian pdf?

$$p(\mathbf{x} \,|\, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}_k|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\right)$$

If the discriminant function is the log posterior probability:

$$y_k(\mathbf{x}) = \ln p(\mathbf{x}|C_k) + \ln P(C_k)$$

 Then, substituting in the log probability of a Gaussian and dropping constant terms we obtain:

$$y_k(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1}(\mathbf{x} - \boldsymbol{\mu}_k) - \frac{1}{2} \ln |\boldsymbol{\Sigma}_k| + \ln P(C_k)$$

• This function is quadratic in x

Discriminant functions for Gaussian pdfs (cont.)

To see if the function is really quadratic in x,

$$(\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)$$

$$= \boldsymbol{x}^T \boldsymbol{\Sigma}_k^{-1} \boldsymbol{x} - \boldsymbol{\mu}_k^T \boldsymbol{\Sigma}_k^{-1} \boldsymbol{x} - \boldsymbol{x}^T \boldsymbol{\Sigma}_k^{-1} \boldsymbol{\mu}_k + \boldsymbol{\mu}_k^T \boldsymbol{\Sigma}_k^{-1} \boldsymbol{\mu}_k$$

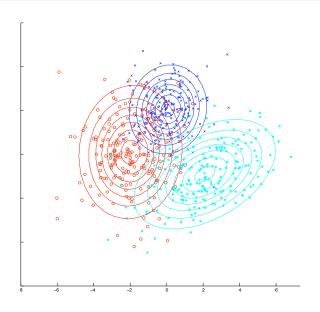
$$= \boldsymbol{x}^T \boldsymbol{\Sigma}_k^{-1} \boldsymbol{x} - 2 \boldsymbol{\mu}_k^T \boldsymbol{\Sigma}_k^{-1} \boldsymbol{x} + \boldsymbol{\mu}_k^T \boldsymbol{\Sigma}_k^{-1} \boldsymbol{\mu}_k$$

• In 2-D case, let
$$\Sigma_k^{-1} = A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
,

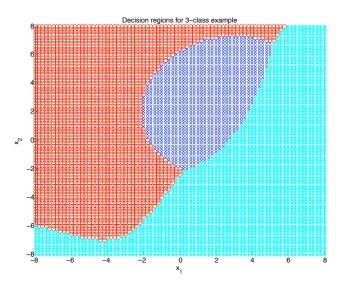
$$\mathbf{x}^{T} \mathbf{\Sigma}_{k}^{-1} \mathbf{x} = \mathbf{x}^{T} A \mathbf{x}
= \begin{pmatrix} x_{1} & x_{2} \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}
= a_{11} x_{1}^{2} + (a_{12} + a_{21}) x_{1} x_{2} + a_{22} x_{2}^{2}$$

See Note 10 for details.

Gaussians estimated from training data



Decision Regions



Gaussians with equal covariance

$$y_{k}(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{k}) - \frac{1}{2} \ln |\boldsymbol{\Sigma}_{k}| + \ln P(C_{k})$$

$$= -\frac{1}{2} (\mathbf{x}^{T} \boldsymbol{\Sigma}_{k}^{-1} \mathbf{x} - 2\boldsymbol{\mu}_{k}^{T} \boldsymbol{\Sigma}_{k}^{-1} \mathbf{x} + \boldsymbol{\mu}_{k}^{T} \boldsymbol{\Sigma}_{k}^{-1} \boldsymbol{\mu}_{k}) - \frac{1}{2} \ln |\boldsymbol{\Sigma}_{k}| + \ln P(C_{k})$$

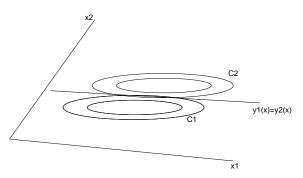
• Consider the special case in which the Gaussian pdfs for each class all share the same class-independent covariance matrix: $\Sigma_k = \Sigma$, $\forall C_k$

$$y_k(\mathbf{x}) = (\boldsymbol{\mu}_k^T \boldsymbol{\Sigma}^{-1}) \mathbf{x} - \frac{1}{2} \boldsymbol{\mu}_k^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k + \ln P(C_k)$$

$$= \mathbf{w}_k^T \mathbf{x} + w_{k0} = w_{kD} x_D + \dots + w_{k1} x_1 + w_{k0}$$
where $\mathbf{w}_k^T = \boldsymbol{\mu}_k^T \boldsymbol{\Sigma}^{-1}$, $w_{k0} = -\frac{1}{2} \boldsymbol{\mu}_k^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k + \ln P(C_k)$

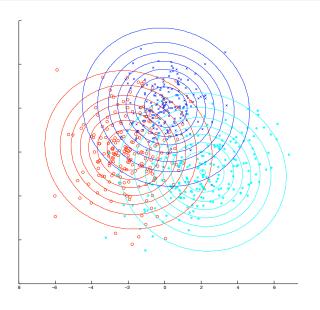
 This is called a linear discriminant function, as it is a linear function of x.

Gaussians with equal covariance (cont.)

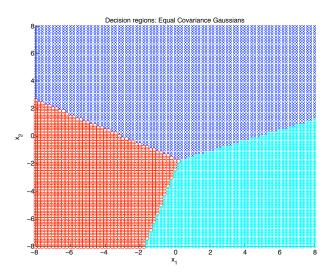


- In two dimensions the boundary is a line
- In three dimensions it is a plane
- In *D* dimensions it is a hyperplane (i.e. $\{\mathbf{x} \mid \mathbf{w}_k^T \mathbf{x} + w_{k0} = 0\}$)

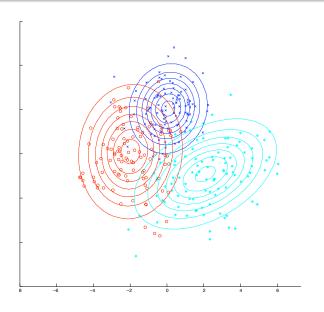
Gaussians estimated from the data: Σ shared



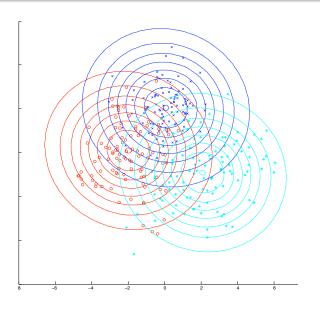
Decision Regions: Σ shared



Testing data (Non-equal covariance)



Testing data (Equal covariance)



Results

Non-equal covariance Gaussians

		Predicted class			
Test Data		Α	В	С	
Actual	Α	77	15	8	
class	В	5	88	7	
	C	9	2	89	

Fraction correct: $(77 + 88 + 89)/300 = 254/300 \approx 0.85$.

• Equal covariance Gaussians

		Predicted class		
Test Data		Α	В	C
Actual		80	14	6
class	В	10	90	0
	C	8	6	86

Fraction correct: $(80 + 90 + 86)/300 = 256/300 \approx 0.85$.

Spherical Gaussians with Equal Covariance

• Spherical Gaussians: $\Sigma = \sigma^2 \mathbf{I}$

$$\Rightarrow |\Sigma| = \sigma^{2D}, \quad \Sigma^{-1} = \frac{1}{\sigma^2} \mathbf{I}$$

$$y_k(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^T \Sigma_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k) - \frac{1}{2} \ln |\Sigma_k| + \ln P(C_k)$$

$$= -\frac{1}{2\sigma^2} (\mathbf{x} - \boldsymbol{\mu}_k)^T (\mathbf{x} - \boldsymbol{\mu}_k) - \frac{1}{2} \ln \sigma^{2D} + \ln P(C_k)$$

$$y_k(\mathbf{x}) = -\frac{1}{2\sigma^2} ||\mathbf{x} - \boldsymbol{\mu}_k||^2 + \ln P(C_k)$$

• If equal prior probabilities are assumed,

$$y_k(\mathbf{x}) = -\|\mathbf{x} - \boldsymbol{\mu}_k\|^2$$

The decision rule: "assign a test data to the class whose mean is closest".

The class means (μ_k) may be regarded as class templates or prototypes.

Two-class linear discriminants

 For a two class problem, the log odds can be used as a single discriminant function:

$$y(\mathbf{x}) = \ln \frac{P(C_1 | \mathbf{x})}{P(C_2 | \mathbf{x})} = \ln \frac{p(\mathbf{x} | C_1) P(C_1)}{p(\mathbf{x} | C_2) P(C_2)}$$

= $\ln p(\mathbf{x} | C_1) - \ln p(\mathbf{x} | C_2) + \ln P(C_1) - \ln P(C_2)$

 If the pdf is a Gaussian with the shared covariance matrix, we have a linear discriminant:

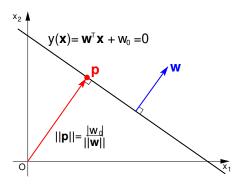
$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

w and w_0 are functions of $\mu_1, \mu_2, \Sigma, P(C_1)$, and $P(C_2)$.

w is a normal vector to the decision boundary.
 Let a and b be two points on the decision boundary

$$\mathbf{w}^T \mathbf{a} + w_0 = \mathbf{w}^T \mathbf{b} + w_0 = 0 \quad \Rightarrow \quad \mathbf{w}^T (\mathbf{a} - \mathbf{b}) = 0$$
i.e. $\mathbf{w} \perp (\mathbf{a} - \mathbf{b})$

Geometry of a two-class linear discriminant



- w is normal to the decision boundary (hyperplane),
 w^Tx + w₀ = 0.
- If p is the point on the hyperplane closest to the origin, then the normal distance from the hyperplane to the origin is given by:

$$\|p\| = \frac{\mathbf{w}^T \mathbf{p}}{\|\mathbf{w}\|} = \frac{|w_0|}{\|\mathbf{w}\|}$$

$$0 = \mathbf{w}^T \mathbf{p} + w_0$$

= $\|\mathbf{w}\| \|\mathbf{p}\| \cos 0 + w_0$
= $\|\mathbf{w}\| \|\mathbf{p}\| \pm w_0$

Exercise

- Considering a classification problem of two classes, where each class is modelled with a D-dimensional Gaussian distribution. Derive the formula for the decision boundary, and show that it is quadratic in x.
- ② Considering a classification problem of two classes, whose discriminant function takes the form, $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$.
 - Confirm that the decision boundary is a straight line when D=2.
 - Confirm that the weight vector w is a normal vector to the decision boundary.
- 3 Try Lab-7 on Classification with Gaussians

Summary

- Obtaining decision boundaries from probability models and a decision rule
- Minimising the probability of error
- Discriminant functions and Gaussian pdfs
- Linear discriminants and Gaussians with equal covariance
- In next lectures, we will see discriminant functions trained with different criteria.