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Today's Schedule _

@ Decision Regions

© Decision Boundaries for minimum error rate classification

© Discriminant Functions
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Decision regions

@ Recall Bayes' Rule:
p(x|C)P(Cx)
p(x)

@ Given an unseen point x, we assign to the class for which
P(Ck|x) is largest. (k" = arg max, P(Cy|x))

@ Thus x-space (the input space) may be regarded as being
divided into decision regions R such that a point falling
in Ry is assigned to class Cj.

P(Culx) =

@ Decision region R, need not be contiguous, but may
consist of several disjoint regions each associated with
class Cj.

@ The boundaries between these regions are called decision
boundaries. (Recall the examples of decision boundaries by
k-NN classification in Chapter 4)
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Gaussians estimated from _
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Decision Regions
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Placement of decision boundaries

o Consider a 1-dimensional feature space (x) and two
classes C; and G,.

@ How to place the decision boundary to minimise the
probability of misclassification (based on p(x, Cy))?

— R1 — | +— Ry — — R — | +— Ry —
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Decision regions and misclassification

Confusion matrix Normalised version
ImM\Out | GG & ImM\Out | GG G
G | Nii Ny N G| Pu P2 Pii+ P =1
G | Nop No G | Po1r P Py + Py =1

Pii=P(x € Ra|C1) = B8, P = P(x € Ro|G) = J2
Py = P(x € Ra|G) = T8, P = P(x € Ro|G) = J22

Ni=Ni14+Nio, Nop=No1+ Ny, 'D(Cl):Nl/yrlNz' P(Cz):ﬁ

Ni1+ N
P(correct) = ﬁ = P11 P(G1) + P2 P((2)
1+ Na
Ni2+ Noy
(error) T 12 P(C1) + Pa1 P(&2)

— [ PG P(G)ax + [ plxICo) PG dx
Ro R1
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Minimising probability of misclassification

plx| C0) P(G:) dx + [ plx| C) P(Cy) dx

R1

P(error|R1,R2) = /

Ro

o If there is x. € R, such that p(x.|C1)P(C1) > p(x.| G)P(G),
letting R5 = Ro — {x.} and R} = Ry + {x.} gives
P(error|R}, R5) < P(error|R1, R2)

@ P(error) is minimised by assigning each point to the class with
the maximum posterior probability (Bayes decision rule / MAP
decision rule / minimum error rate classification).

@ This justification for the maximum posterior probability may be
extended to D-dimensional feature vectors and K classes
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Minimising probability of misclassification (cont.)

'y ~
Zo x

p(z,Cy)

p($762)

v

R1 RZ

After Fig. 1.24, C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
X denotes the current decision boundary, which causes error shown in red,
green, and blue regions. The error is minimised by locating the boundary

at x,.
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Discriminant functions

@ We can express a classification rule in terms of a
discriminant function y,(x) for each class, such that x is
assigned to class Cj if:

yi(x) > ye(x) VLF#k
@ If we assign x to class C with the highest posterior
probability P(C|x), then the log posterior probability
forms a suitable discriminant function:

yk(X) =In p(X| Ck) +In P(Ck)
@ Decision boundaries between C, and C; are defined when
the discriminant functions are equal: yx(x) = yi(x)

@ Decision boundaries are not changed by monotonic
transformations (such as taking the log) of the
discriminant functions.
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Discriminant functions for Gaussian pdfs

@ What is the form of the discriminant function when using
a Gaussian pdf?

1 1 _
P(x| pi, ) = W@(P (—2(X — ) I (x - Hk))

@ If the discriminant function is the log posterior probability:
ye(x) = Inp(x|Cy) + In P(Cy)

@ Then, substituting in the log probability of a Gaussian
and dropping constant terms we obtain:

1 1
yi(x) = —§(x — uk)TEzl(x — k) — 3 In|3x| + In P(Cy)

@ This function is quadratic in x
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Discriminant functions for Gaussian pdfs (cont)

@ To see if the function is really quadratic in x,
(x = o) "ZH(x — pi)
= x "3 = g S0 X = x TS o+ g 5
= x B = 2 3 g 3
@ In 2-D case, let 2;1 = A= ( i a1 )
d1  ax
xT2;1x =x"Ax
di1 412 X1
=(x x
( ' 2)(321 322)(X2)
= 311X12 + (212 + ap1)x1x0 + 822X22

See Note 10 for details.
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Gaussians estimated from tra_
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Decision Regions
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Gaussians with equal covariance

1 _ 1
Vi) == (= ) "2, (x = ) = 5 In || +In P(C)
1 _ - _ 1
= _E(xTzk 1x—2u[2k1x+u[2k1uk)—§ In || +In P(Cy)

@ Consider the special case in which the Gaussian pdfs for
each class all share the same class-independent covariance
matrix: X, = X, V Gy

1
yi(x) = (ukTE’l) X — Euzzfluk + In P(Cy)

:WZ-X—I— Wiko = WkDXD+"'+Wk1X1+WkO
1
vvhere WZ— = MZ—ZTI, Wgo = —Euz—zilll,k =+ In P(C/()

@ This is called a linear discriminant function, as it is a
linear function of x.
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Gaussians with equal covariance (cont)

x2

S

y1(x)=y2(x)

x1
@ In two dimensions the boundary is a line
@ In three dimensions it is a plane

@ In D dimensions it is a hyperplane
(i.e. {x| w/x+w = 0})
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Gaussians estimated from the da_
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Decision Regions: X shared _

Decision regions: Equal Covariance Gaussians

-8t
Zs 26 4 2 0 2 4 6 8

Inf2b - Learning: Lecture 10 Discriminant functions 18



Testing data (Non-equal co_
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Results

@ Non-equal covariance Ga

ussians

Predicted class

Test Data | A B C

Actual A | 77 1

5 8

class B| 5 88 7

c| 9

Fraction correct: (77 + 88 + 89)/300 = 254/300

@ Equal covariance Gaussia

2 89

ns

Predicted class

Test Data | A B C
Actual A | 80 14 6
class B | 10 90 0
Cc| 8 6 86

Fraction correct: (80 + 90 + 86)/300 = 256,/300
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Spherical Gaussians with Equal Covariance

@ Spherical Gaussians: ¥ = o2l
1

= |Bl=0*, ===l
o
1 _ 1
Ylx) = —20x — ) TS (x — ) — 0[S 410 P(CL)
1 1
= _ﬁ(x — i) T (x — pi) — > Ino?P +In P(Cy)

1
Yx) = =5 Ix — el + 10 P(C)

@ If equal prior probabilities are assumed,
2
Yie(x) = =[x = g
The decision rule: “assign a test data to the class whose
mean is closest” .

The class means (px) may be regarded as class templates
or prototypes.
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Two-class linear discriminants

@ For a two class problem, the log odds can be used as a
single discriminant function:

(x) = In P(Gx) _ | pP(x|G)P(G)
g P(GIx) " px|G)P(C)
=Inp(x|G) —Inp(x| &)+ InP(CG) —InP(G)

@ If the pdf is a Gaussian with the shared covariance matrix,
we have a linear discriminant:
y(x) =w'x + w
w and wg are functions of wy, o, 3, P(Cy),and P(G).
@ w is a normal vector to the decision boundary.
Let a and b be two points on the decision boundary
watw=wb+w=0 = w(a—-b)=0
i.,e. wl(a—b)
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Geometry of a two-class linear discriminant

@ w is normal to the
decision boundary

(hyperplane),
% A w'x +wy =0.
SN Y(X)= WX +w, =0 o If p is the point on the
hyperplane closest to the
p w origin, then the normal
distance from the
hyperplane to the origin
”p”=|J|%z|J| is given by: i
I [ Ay
° | Iwll— flwl

O=w'p-+w
= ||lwl[[[p[| cos 0 + wo
= |lwl[lIpll £ wo
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Exercise

© Considering a classification problem of two classes, where
each class is modelled with a D-dimensional Gaussian
distribution. Derive the formula for the decision boundary,
and show that it is quadratic in x.

@ Considering a classification problem of two classes, whose
discriminant function takes the form, y(x) = w’x + wyg.

e Confirm that the decision boundary is a straight line
when D = 2.

e Confirm that the weight vector w is a normal vector to
the decision boundary.

© Try Lab-7 on Classification with Gaussians
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Summary

@ Obtaining decision boundaries from probability models
and a decision rule

@ Minimising the probability of error

@ Discriminant functions and Gaussian pdfs

@ Linear discriminants and Gaussians with equal covariance

@ In next lectures, we will see discriminant functions trained

with different criteria.
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