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Today's Schedule

Classification with Gaussians

@ The multidimensional Gaussian distribution (recap.)
© Practical topics on covariance matrix

© Bayes theorem and probability densities

@ 1-dimensional Gaussian classifier

© Multivariate Gaussian classifier

@ Evaluation of classifier performance
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The multidimensional Gaussian distribution

@ The D-dimensional vector x = (x1,...,xp)" is

multivariate Gaussian if it has a probability density
function of the following form:

p(x|p, ) = W exp (—%(x —p) 2T (x - u)) :

The pdf is parameterised by the mean vector p and the
covariance matrix 2.

@ The 1-dimensional Gaussian is a special case of this pdf

@ The argument to the exponential 1(x — p) 737 (x — p)
is referred to as a quadratic form, and it is always
non-negative.
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Covariance matrix

Covariance matrix (with ML estimation):
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where Xp = (ana s ;XnD)T

n = (N17~-7MD)T
o Symmetric: X7 =3, and (X717 = X!

@ Semi-positive definite: xS x >0, and x" X" 1x >0
e cf: sample covariance matrix, which uses ——

1
N—-1"
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Maximum likelihood fit to a Gaussian
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Tips on calculating covariance matrices

MATLAB is optimised for matrix/vector operations

s =2 Z (6 = 1)x0 = )T

(D x D) D x1) (1x D)
T T
1 Xy —H
_N(Xl_y’?"'axN—”’)
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Properties of covariance matrix

S=VvDVT
Vi1 -+ Vip A1 0 Vi1
Vp1 - VpD 0 )\D VD1

= (v1,...,vp) Diag(A1, ..., Ap) (vi, ..., vD)T

@ v; : eigen vector, \; : eigen value
> Vi = )\,‘ Vi
(*] )\,’ZO, ||V,||:1
D
° |2| = Hi:l A"

° Z:P:I Oii = ZID:I Ai
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Properties of covariance matrix

o rank(X)

e the number of linearly independent columns (or rows)
o the number of bases (i.e. the dimension of the column
space)

rank(¥) =D — VY, : A\ >0
V,';gj LV 1 Vv
1X| >0

rank(E) <D — 3,’ : >\,' =0

i) e, x) =1
X[ =0
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Geometry of covariance matrix

X5

B R

X1

Sort eigen values: A\ > X\ > ... > Ap

vy :  eigen vector of \;
v, ©  eigen vector of A\,

n= v1TX ' Var()’l) =\
ya=vix, Var(y) =X
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Geometry of covariance matrix

Y2
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(x—p)' S x—p) = (y-@)'(y—a) = |ly—da> ©
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Problems with the estimation of covariance matrix

e || — 0 when
o N is not large enough (when compared with D)
NB: |X|=0for N<D
e There is high dependence (correlation) among variables
(e.g. p(xi, %)~ 1)

e X! becomes unstable when |X| is small.

@ Solutions?
o Share 3 among classes (=linear discriminant functions)
e Assume independence among variables = a diagonal
covariance matrix rather than a 'full’ covariance matrix.
e Reduce the dimensionality by transforming the data into
a low-dimensional vector space (e.g. PCA).
e Another regularisation:
o Add a small positive number to the diagonal elements

X+ X+ el
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Shared covariance matrix among classes

@ How to estimate the shared covariance:
=% forallk=1,... K

Y= ik

X[+
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@ Why is the following not good?
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Covariance matrix when naive Bayes is assumed

0 opD

Pl 1.3) = g @ (3 (x — )= (= )

= p(x1|,u1, 011) T P(XD|,UD7 UDD)
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Bayes theorem and probability densities

@ Rules for probability densities are similar to those for
probabilities:

p(x,y) = p(xly) p(y)
p(x) = [ plx.y)dy
@ We may mix probabilities of discrete variables and
probability densities of continuous variables:
p(x, Z) = p(x|2) P(2)
@ Bayes' theorem for continuous data x and class C:
p(x|C) P(C)
p(x)
P(Clx) o p(x|C) P(C)

P(Clx) =
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Bayes theorem and univariate Gaussians

e If p(x|C) is Gaussian with mean y and variance o:
P(C|x) o p(x|C) P(C) = N(x;1,0%) P(C)
1 —(x—n)?
P(C
@ The log likelihood LL(x|C) is:

LL(x|p,0?) = In p(x|p, 0?)

_1 <— In(27) — In 0 — (= “)2)

2 o2
@ The log posterior probability In P(C|x) is:
In P(C|x) o LL(x| C) + In P(C)

X (— In(27) — Ino? — M) +InP(C)

2 o2
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Log probability ratio (log odds)

For a classification problem of two classes: C; and G,

P(Ci|x)

" PGl

= In P(Ci|x) — In P(Gx)
1 <(X —m)?  (x— )

2 2
= — +Inoj —Ino;
2 o2 o3

+InP(G) —InP(G)

InP(Clx) —InP(Glx) >0 = G

InP(Gi|x) —InP(Glx) <0 = G
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Example: 1-dimensional Gaussian classifier

@ Two classes, S and T, with some observations:
Class S[10 8 10 10 11 11
Class T |12 9 15 10 13 13

@ Assume that each class may be modelled by a Gaussian.
The estimated mean and variance of each pdf with the
maximum likelihood (ML) estimation are given as follows:

w(S)=10 o*S)=1
w(T)=12 o*(T)=4

@ The following unlabelled data points are available:
x1 =10, x =11, x3=06
To which class should each of the data points be
assigned?
Assume the two classes have equal prior probabilities.
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Gaussian pdfs for S and T vs histograms

AT (\p(x|5>

0.1 (x]T)

\J/
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Posterior probabilities

p (x)

P(S)=0.

5, P(T)=0.5

P (TIx)
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Example: 1-dimensional Gaussian classifier (cont)

@ Take the log odds (posterior probability ratios):

PSIX=x)  1((x=uf (x=pr)® | » . o
——— == — I — |
In PTIX = x) > < J% oz +Inos —Inot

+InP(S) —InP(T)
@ In the example the priors are equal, so:

P(SIX=x) _ 1 /((x=ps)® (x—pr) 2 2
——= == - I — |
In PTIX = x) > ( P oz +Inos —Inot

:_% ((x—lO)z—(Xj‘fl2)2—|n4>

o If log odds are less than 0 assign to T, otherwise assign
to S.
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Log odds

Test samples: x; =10, x, =11, x3 =16

In P(SIx)/P(TIx)

2

2k

4

-6

—12 L L L I

Inf2b - Learning: Lecture 9

Classification with Gaussians

21



Example: unequal priors

@ Now, assume P(S) = 0.3, P(T) = 0.7. Including this
prior information, to which class should each of the above
test data points, xi, x>, x3, be assigned?

@ Again compute the log odds:

P(SIX=x) 1 ((x — sl (x—pr)

"P(TX=x) 2\ o2 oz "% “UT>

+InP(S)—InP(T)

- _% ((X _qop - 2127 _412)2 - In4> +1InP(S) — In P(T)

— _% ((x —10)? — (XTQ)Q - In4) +1In(3/7)
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Log odds

Test samples: x; =10, x =11, x3 =6

In P(SIX)/P(TIx)

2

-4

-8

-12!
5
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Multivariate Gaussian classifier

@ Multivariate Gaussian (in D dimensions):

p(x|p, X) = W exp (—%(X — ) E (x - H))

e Log likelihood:
LL(x| 1, %) = =2 In(2m) — 3 In[2] = S(x — )2 (x — )
@ Posterior probability: p(C|x) o< p(x|u, X)P(C)

@ Log posterior probability:
In P(C|x) —%(x — )" N x—p) — % In|X] + In P(C) + const.

o Try Q4 of Tutorial 4
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Example

@ 2-dimensional data from three classes (A, B, C).
@ The classes have equal prior probabilities.
@ 200 points in each class

@ Load into Matlab ( n x 2 matrices, each row is a data
point) and display using a scatter plot:

xa = load(’trainA.dat’);
xb = load(’trainB.dat’);
xc = load(’trainC.dat’);

hold on;

scatter(xa(:, 1), xa(:,2), ’r’, ’0’);
scatter(xb(:, 1), xb(:,2), ’b’, ’x7);
scatter(xc(:, 1), xc(:,2), ’c’, ’*x’);
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Training data
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Gaussians estimated from trainin_

Fk

6

-8 -6 -4 -2 0 2 4 6
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Testing data
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Testing data — with estimated class distributions

Inf2b - Learning: Lecture 9 Classification with Gaussians 29



Testing data — with true class i_
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Classifying test data from
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Classifying test data from
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Classifying test data from
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Result

@ Analyse the result by percent correct, and in more detail
with a confusion matrix
e Columns of a confusion matrix correspond to the

predicted classes (classifier outputs)
e Rows correspond to the actual (true) class labels
e Element (r,c) is the number of patterns from true class

r that were classified as class ¢
e Total number of correctly classified patterns is obtained

by summing the numbers on the leading diagonal
@ Confusion matrix in this case
Predicted class
Test Data | A B C
Actual A |77 15 8
class B| 5 88 7
C| 9 2 89
@ Overall proportion of test patterns correctly classified is
(77 + 88 4+ 89) /300 = 254 /300 = 0.85
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Performance measures

Accuracy (correct classification rate) = 1 — error rate

°
@ Confusion matrix
@ Precision, Recall
°

F-measure (F1 score)
Precision x Recall

F=2
. Precision 4+ Recall

Receiver operating characteristic (ROC)

NB: measures shown in grey are non-examinable
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Example: Classifying spoken vowels

@ 10 Spoken vowels in American English

@ Vowels can be characterised by formant frequencies —
resonances of vocal tract

o there are usually three or four identifiable formants
o first two formants written as F1 and F2

@ Peterson-Barney data — recordings of spoken vowels by
American men, women, and children

two examples of each vowel per person

for this example, data split into training and test sets

children’s data not used in this example

different speakers in training and test sets

@ (see http://en.wikipedia.org/wiki/Vowel for more)
@ Classify the data using a Gaussian classifier

@ Assume equal priors

Inf2b - Learning: Lecture 9 Classification with Gaussians 36


http://en.wikipedia.org/wiki/Vowel

The data

Ten steady-state vowels, frequencies of F1 and F2 at their
centre:

o IY — “bee”

o IH— “big"

e EH — "red”

o AE — “at”

@ AH — "honey”
o AA — "heart”
o AO — “frost”
e UH — “could”
e UW — “you”

e ER — “bird”
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Vowel data — 10 classes

F2/Hz
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Peterson-Barney F1-F2 Vowel Training Data
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Data

and Gaussians for each class

3500 —

3000 —

2500 —

F2/Hz

1500 —

1000 —

2000 —

Peterson-Barney F1-F2 Vowel Training Data

500
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Gaussians for each class _

Peterson—-Barney F1-F2 Vowel Test Data
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1
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Decision Regions




Test data for class 1 (1Y) _

Peterson—-Barney F1-F2 Vowel Test Data
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Test data for class 2 (1Y) _

Peterson—-Barney F1-F2 Vowel Test Data
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1
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Confusion matrix

Predicted class

IY I[H EH AE AH AA AO UH UW ER | % corr.

'Y |20 O 0 0 0 0 0 0 0 0 100
IH| 0 20 0 0 0 0 0 0 0 0 100
EH| 0 0 15 1 0 0 0 0 0 4 75
AE| 0 O 3 16 1 0 0 0 0 0 80
AH| 0 O 0 0 18 2 0 0 0 0 90
AA| 0 O 0 0 2 17 1 0 0 0 85
AO| 0 O 0 0 0 4 16 0 0 0 80
UH| 0 O 0 0 2 0 0 18 0 0 90
Uw | 0 0 0 0 0 0 0 5 15 0 75
ER| 0 O 0 0 0 0 0 2 0 18 90
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Exercise

© Consider estimating a covariance matrix X from a data
set. Discuss what we could say about the data for the
following situations:
e X is almost diagonal (i.e. ojj = 0 for i # j).
o |X| ~0.

@ Give examples of data for each situation above.

© Discuss the minimum number of training samples required
to have a covariance matrix that is invertible, i.e.
13| # 0. (Hint: think D =1 first, and D = 2, and so on.)
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Summary

Covariance matrix
Using Bayes' theorem with pdfs
Log probability ratio (log odds)

The Gaussian classifier: 1-dimensional and
multi-dimensional

Classification examples

@ Evaluation measures. Confusion matrix

Familiarise yourself with vector/matrix operations,

using pens and papers! (as well as computers)
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