Inf2b - Learning

Lecture 9: Classification with Gaussians

Hiroshi Shimodaira (Credit: Iain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR)
School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/inf2b/ https://piazza.com/ed.ac.uk/spring2020/infr08028 Office hours: Wednesdays at 14:00-15:00 in IF-3.04

Jan-Mar 2020

Today's Schedule

Classification with Gaussians

- The multidimensional Gaussian distribution (recap.)
- Practical topics on covariance matrix
- 3 Bayes theorem and probability densities
- 4 1-dimensional Gaussian classifier
- Multivariate Gaussian classifier
- 6 Evaluation of classifier performance

The multidimensional Gaussian distribution

• The *D*-dimensional vector $\mathbf{x} = (x_1, \dots, x_D)^T$ is multivariate Gaussian if it has a probability density function of the following form:

$$p(\mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right).$$

The pdf is parameterised by the mean vector μ and the covariance matrix Σ .

- The 1-dimensional Gaussian is a special case of this pdf
- The argument to the exponential $\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)$ is referred to as a *quadratic form*, and it is always *non-negative*.

Covariance matrix

Covariance matrix (with ML estimation):

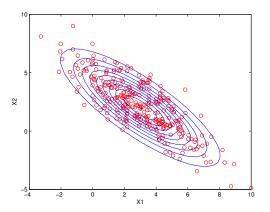
$$\Sigma = \left(egin{array}{ccc} \sigma_{11} & \cdots & \sigma_{1D} \ dots & \ddots & dots \ \sigma_{D1} & \cdots & \sigma_{DD} \end{array}
ight) = rac{1}{N} \sum_{n=1}^N (oldsymbol{x}_n - oldsymbol{\mu}) (oldsymbol{x}_n - oldsymbol{\mu})^{T}$$

where
$$\mathbf{x}_n = (x_{n1}, \dots, x_{nD})^T$$

 $\boldsymbol{\mu} = (\mu_1, \dots, \mu_D)^T$

- ullet Symmetric : $\Sigma^{\mathcal{T}}=\Sigma$, and $(\Sigma^{-1})^{\mathcal{T}}=\Sigma^{-1}$
- Semi-positive definite: $\mathbf{x}^T \mathbf{\Sigma} \mathbf{x} \geq 0$, and $\mathbf{x}^T \mathbf{\Sigma}^{-1} \mathbf{x} \geq 0$
- ullet cf: sample covariance matrix, which uses $\frac{1}{N-1}$.

Maximum likelihood fit to a Gaussian



Tips on calculating covariance matrices

MATLAB is optimised for matrix/vector operations

$$\sum_{(D \times D)} = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu)(x_n - \mu)^T$$

$$= \frac{1}{N} (x_1 - \mu, \dots, x_N - \mu) \begin{pmatrix} x_1^T - \mu^T \\ \vdots \\ x_N^T - \mu^T \end{pmatrix}$$

$$= \frac{1}{N} (X - M_N)^T (X - M_N)$$

$$= \frac{1}{N} \begin{bmatrix} x_1^T \\ \vdots \\ x_N^T \end{bmatrix} = \begin{bmatrix} x_{11}, \dots, x_{1D} \\ \vdots \\ x_{N1}, \dots, x_{ND} \end{bmatrix}, \quad M_N = \begin{bmatrix} M \\ \vdots \\ M \end{bmatrix} = \begin{bmatrix} \mu_1, \dots, \mu_D \\ \vdots \\ \mu_1, \dots, \mu_D \end{bmatrix}$$

$$M = \mu^T = \begin{bmatrix} \mu_1, \dots, \mu_D \end{bmatrix}, \qquad = \frac{1}{N} \mathbf{1}_{NN} X$$

Properties of covariance matrix

$$\Sigma = V D V^{T}$$

$$= \begin{pmatrix} v_{11} & \cdots & v_{1D} \\ \vdots & \ddots & \vdots \\ v_{D1} & \cdots & v_{DD} \end{pmatrix} \begin{pmatrix} \lambda_{1} & 0 \\ & \ddots \\ 0 & \lambda_{D} \end{pmatrix} \begin{pmatrix} v_{11} & \cdots & v_{1D} \\ \vdots & \ddots & \vdots \\ v_{D1} & \cdots & v_{DD} \end{pmatrix}^{T}$$

$$= (\mathbf{v}_{1}, \dots, \mathbf{v}_{D}) \operatorname{Diag}(\lambda_{1}, \dots, \lambda_{D}) (\mathbf{v}_{1}, \dots, \mathbf{v}_{D})^{T}$$

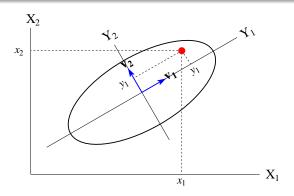
- \mathbf{v}_i : eigen vector, λ_i : eigen value $\mathbf{\Sigma} \ \mathbf{v}_i = \lambda_i \ \mathbf{v}_i$
- $\lambda_i \geq 0$, $\|\mathbf{v}_i\| = 1$
- $|\Sigma| = \prod_{i=1}^{D} \lambda_i$
- $\bullet \ \sum_{i=1}^{D} \sigma_{ii} = \sum_{i=1}^{D} \lambda_{i}$

Properties of covariance matrix

- $rank(\Sigma)$
 - the number of linearly independent columns (or rows)
 - the number of bases (i.e. the dimension of the column space)

$$\operatorname{rank}(\mathbf{\Sigma}) = D \quad o \quad \forall_i \ : \ \lambda_i > 0$$
 $\forall_{i \neq j} \ : \ \mathbf{v}_i \perp \mathbf{v}_j$ $|\mathbf{\Sigma}| > 0$ $\operatorname{rank}(\mathbf{\Sigma}) < D \quad o \quad \exists_i \ : \ \lambda_i = 0$ $\exists_{(i,j)} \ : \ \rho(x_i, x_j) = 1$ $|\mathbf{\Sigma}| = 0$

Geometry of covariance matrix

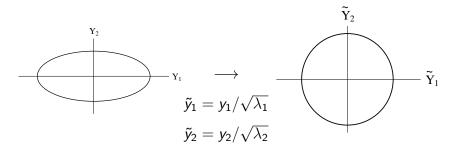


Sort eigen values: $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_D$

 \mathbf{v}_1 : eigen vector of λ_1 \mathbf{v}_2 : eigen vector of λ_2

$$y_1 = \mathbf{v}_1^T \mathbf{x}$$
, $\operatorname{Var}(y_1) = \lambda_1$
 $y_2 = \mathbf{v}_2^T \mathbf{x}$, $\operatorname{Var}(y_2) = \lambda_2$

Geometry of covariance matrix



$$(\mathbf{x} - \mathbf{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu}) = (\tilde{\mathbf{y}} - \tilde{\mathbf{u}})^T (\tilde{\mathbf{y}} - \tilde{\mathbf{u}}) = ||\tilde{\mathbf{y}} - \tilde{\mathbf{u}}||^2$$
where $\tilde{\mathbf{u}} = \left(\frac{\mathbf{v}_1}{\sqrt{\lambda_1}}, \frac{\mathbf{v}_2}{\sqrt{\lambda_2}}\right)^T \mathbf{\mu}$

$$= \left(\frac{\mathbf{v}_1^T \mathbf{\mu}}{\sqrt{\lambda_1}}, \frac{\mathbf{v}_2^T \mathbf{\mu}}{\sqrt{\lambda_2}}\right)^T$$

(†)

Problems with the estimation of covariance matrix

- ullet $|\Sigma|
 ightarrow 0$ when
 - *N* is not large enough (when compared with *D*) NB: $|\Sigma| = 0$ for $N \le D$
 - There is high dependence (correlation) among variables (e.g. $\rho(x_i, x_j) \approx 1$)
- ullet Σ^{-1} becomes unstable when $|\Sigma|$ is small.
- Solutions?
 - ullet Share Σ among classes (\Rightarrow linear discriminant functions)
 - Assume independence among variables ⇒ a diagonal covariance matrix rather than a 'full' covariance matrix.
 - Reduce the dimensionality by transforming the data into a low-dimensional vector space (e.g. PCA).
 - Another regularisation:
 - Add a small positive number to the diagonal elements

$$\Sigma \leftarrow \Sigma + \epsilon I$$

Shared covariance matrix among classes

• How to estimate the shared covariance:

$$egin{aligned} \Sigma_k &= \Sigma & ext{for all } k = 1, \dots, K \ \Sigma &= rac{1}{K} \sum_{k=1}^K \Sigma_k \ &= rac{1}{K} \sum_{k=1}^K rac{1}{N_k} \sum_{k=1}^{N_k} (oldsymbol{x}_n^{(k)} - oldsymbol{\mu}^{(k)}) (oldsymbol{x}_n^{(k)} - oldsymbol{\mu}^{(k)})^T \end{aligned}$$

• Why is the following not good?

$$egin{aligned} \Sigma &= rac{1}{N} \sum_{n=1}^{N} (\pmb{x}_n - \pmb{\mu}) (\pmb{x}_n - \pmb{\mu})^{\mathsf{T}} \ &= rac{1}{K} \sum_{k=1}^{K} rac{1}{N_k} \sum_{n=1}^{N} (\pmb{x}_n^{(k)} - \pmb{\mu}) (\pmb{x}_n^{(k)} - \pmb{\mu})^{\mathsf{T}} \end{aligned}$$

Covariance matrix when naive Bayes is assumed

$$\Sigma = \begin{pmatrix} \sigma_{11} & 0 \\ & \ddots & \\ 0 & \sigma_{DD} \end{pmatrix}, \qquad \sigma_{ij} = 0 \text{ for } i \neq j$$

$$p(x \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(x - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(x - \boldsymbol{\mu})\right)$$

$$= p(x_1 \mid \mu_1, \sigma_{11}) \cdots p(x_D \mid \mu_D, \sigma_{DD})$$

$$= \prod_{i=1}^{D} \left\{ \frac{1}{\sqrt{2\pi\sigma_{ii}}} \exp\left(\frac{-(x_i - \mu_i)^2}{2\sigma_{ii}}\right) \right\}$$

Bayes theorem and probability densities

 Rules for probability densities are similar to those for probabilities:

$$p(x,y) = p(x|y) p(y)$$
$$p(x) = \int p(x,y) dy$$

 We may mix probabilities of discrete variables and probability densities of continuous variables:

$$p(x, Z) = p(x|Z) P(Z)$$

• Bayes' theorem for continuous data x and class C:

$$P(C|x) = \frac{p(x|C) P(C)}{p(x)}$$
$$P(C|x) \propto p(x|C) P(C)$$

Bayes theorem and univariate Gaussians

• If p(x|C) is Gaussian with mean μ and variance σ^2 :

$$P(C|x) \propto p(x|C) P(C) = N(x; \mu, \sigma^2) P(C)$$

 $\propto \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right) P(C)$

• The log likelihood LL(x|C) is:

$$LL(x | \mu, \sigma^2) = \ln p(x | \mu, \sigma^2)$$
$$= \frac{1}{2} \left(-\ln(2\pi) - \ln \sigma^2 - \frac{(x - \mu)^2}{\sigma^2} \right)$$

• The log posterior probability $\ln P(C|x)$ is:

$$\begin{split} \ln P(\textit{C}\,|\,\textit{x}) &\propto \textit{LL}(\textit{x}\,|\,\textit{C}) + \ln P(\textit{C}) \\ &\propto \frac{1}{2} \left(-\ln(2\pi) - \ln \sigma^2 - \frac{(\textit{x}-\mu)^2}{\sigma^2} \right) + \ln P(\textit{C}) \end{split}$$

Log probability ratio (log odds)

For a classification problem of two classes: C_1 and C_2 ,

$$\ln \frac{P(C_1|x)}{P(C_2|x)} = \ln P(C_1|x) - \ln P(C_2|x)$$

$$= -\frac{1}{2} \left(\frac{(x - \mu_1)^2}{\sigma_1^2} - \frac{(x - \mu_2)^2}{\sigma_2^2} + \ln \sigma_1^2 - \ln \sigma_2^2 \right)$$

$$+ \ln P(C_1) - \ln P(C_2)$$

$$\ln P(C_1|x) - \ln P(C_2|x) > 0 \quad \Rightarrow \quad C_1$$
$$\ln P(C_1|x) - \ln P(C_2|x) < 0 \quad \Rightarrow \quad C_2$$

Example: 1-dimensional Gaussian classifier

 \bullet Two classes, S and T, with some observations:

 Assume that each class may be modelled by a Gaussian.
 The estimated mean and variance of each pdf with the maximum likelihood (ML) estimation are given as follows:

$$\mu(S) = 10$$
 $\sigma^{2}(S) = 1$
 $\mu(T) = 12$ $\sigma^{2}(T) = 4$

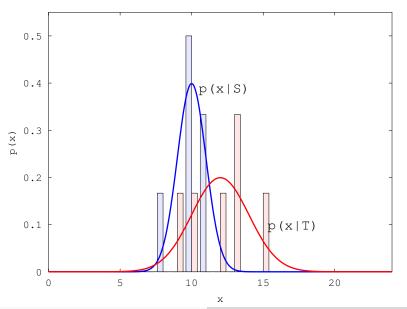
• The following unlabelled data points are available:

$$x_1 = 10, \quad x_2 = 11, \quad x_3 = 6$$

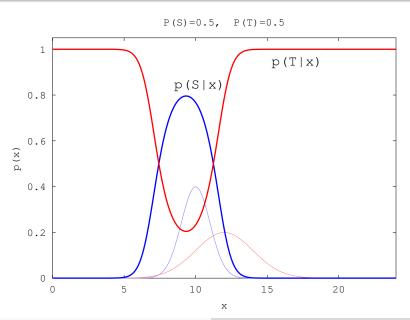
To which class should each of the data points be assigned?

Assume the two classes have equal prior probabilities.

Gaussian pdfs for S and T vs histograms



Posterior probabilities



Example: 1-dimensional Gaussian classifier (cont.)

• Take the log odds (posterior probability ratios):

$$\ln \frac{P(S|X=x)}{P(T|X=x)} = -\frac{1}{2} \left(\frac{(x-\mu_s)^2}{\sigma_S^2} - \frac{(x-\mu_T)^2}{\sigma_T^2} + \ln \sigma_S^2 - \ln \sigma_T^2 \right) + \ln P(S) - \ln P(T)$$

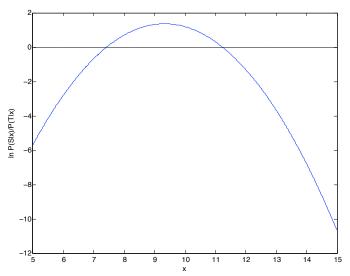
In the example the priors are equal, so:

$$\ln \frac{P(S|X=x)}{P(T|X=x)} = -\frac{1}{2} \left(\frac{(x-\mu_s)^2}{\sigma_s^2} - \frac{(x-\mu_T)^2}{\sigma_T^2} + \ln \sigma_s^2 - \ln \sigma_T^2 \right)$$
$$= -\frac{1}{2} \left((x-10)^2 - \frac{(x-12)^2}{4} - \ln 4 \right)$$

 If log odds are less than 0 assign to T, otherwise assign to S.

Log odds

Test samples: $x_1 = 10, x_2 = 11, x_3 = 6$



Example: unequal priors

- Now, assume P(S) = 0.3, P(T) = 0.7. Including this prior information, to which class should each of the above test data points, x_1, x_2, x_3 , be assigned?
- Again compute the log odds:

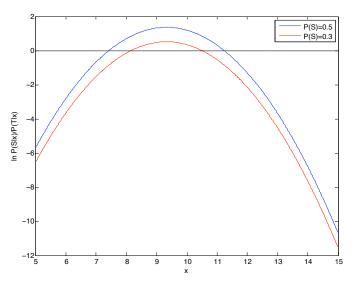
$$\ln \frac{P(S|X=x)}{P(T|X=x)} = -\frac{1}{2} \left(\frac{(x-\mu_S)^2}{\sigma_S^2} - \frac{(x-\mu_T)^2}{\sigma_T^2} + \ln \sigma_S^2 - \ln \sigma_T^2 \right) + \ln P(S) - \ln P(T)$$

$$= -\frac{1}{2} \left((x-10)^2 - \frac{(x-12)^2}{4} - \ln 4 \right) + \ln P(S) - \ln P(T)$$

$$= -\frac{1}{2} \left((x-10)^2 - \frac{(x-12)^2}{4} - \ln 4 \right) + \ln(3/7)$$

Log odds

Test samples: $x_1 = 10$, $x_2 = 11$, $x_3 = 6$



Multivariate Gaussian classifier

• Multivariate Gaussian (in *D* dimensions):

$$p(\mathbf{x} \,|\, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

• Log likelihood:

$$LL(\mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{D}{2} \ln(2\pi) - \frac{1}{2} \ln|\boldsymbol{\Sigma}| - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

- ullet Posterior probability: $p(\mathcal{C}|x) \propto p(x|\mu,\Sigma)P(\mathcal{C})$
- Log posterior probability:

$$\ln P(\mathcal{C} \, | \, \mathbf{x}) \propto -rac{1}{2} (\mathbf{x} - oldsymbol{\mu})^{\mathcal{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - oldsymbol{\mu}) - rac{1}{2} \ln |\mathbf{\Sigma}| + \ln P(\mathcal{C}) + ext{const.}$$

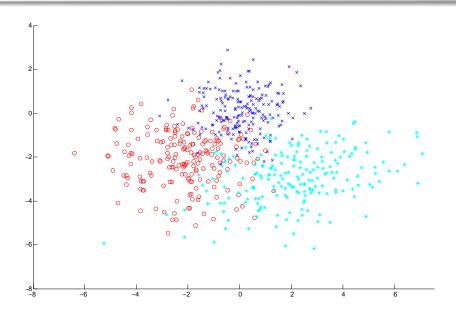
Try Q4 of Tutorial 4

Example

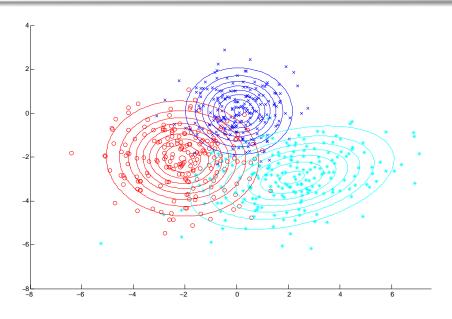
- 2-dimensional data from three classes (A, B, C).
- The classes have equal prior probabilities.
- 200 points in each class
- Load into Matlab ($n \times 2$ matrices, each row is a data point) and display using a scatter plot:

```
xa = load('trainA.dat');
xb = load('trainB.dat');
xc = load('trainC.dat');
hold on;
scatter(xa(:, 1), xa(:,2), 'r', 'o');
scatter(xb(:, 1), xb(:,2), 'b', 'x');
scatter(xc(:, 1), xc(:,2), 'c', '*');
```

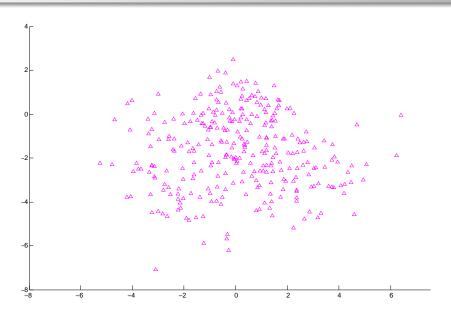
Training data



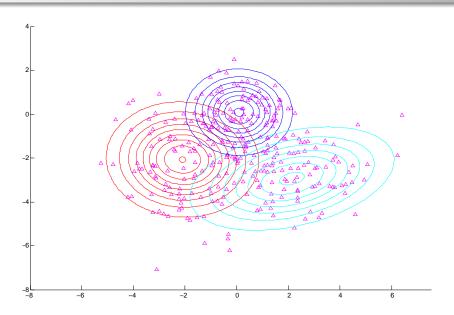
Gaussians estimated from training data



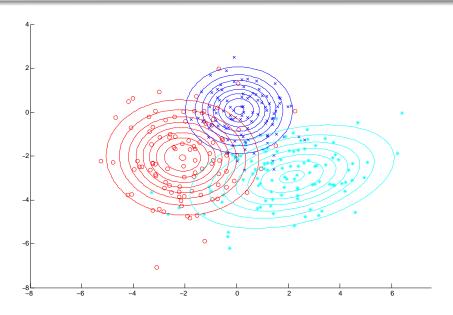
Testing data



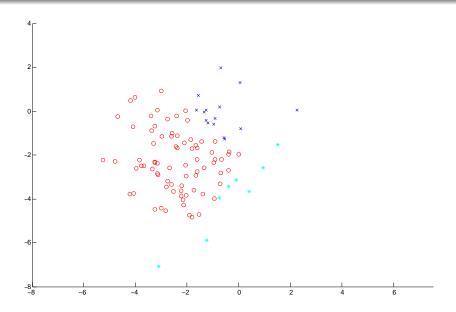
Testing data — with estimated class distributions



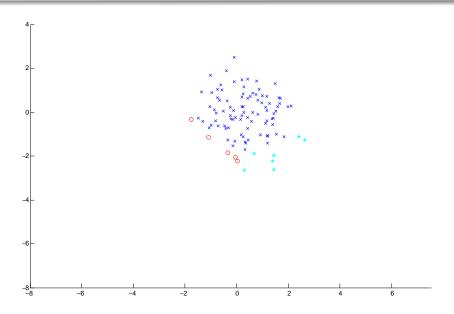
Testing data — with true class indicated



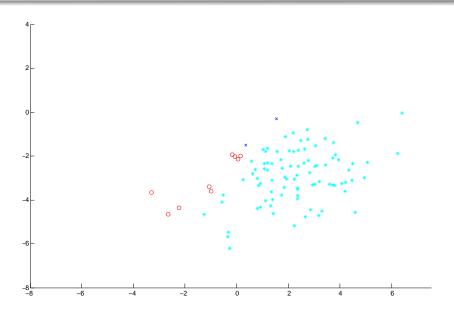
Classifying test data from class A



Classifying test data from class B



Classifying test data from class C



Result

- Analyse the result by percent correct, and in more detail with a confusion matrix
 - Columns of a confusion matrix correspond to the predicted classes (classifier outputs)
 - Rows correspond to the actual (true) class labels
 - Element (r, c) is the number of patterns from true class r that were classified as class c
 - Total number of correctly classified patterns is obtained by summing the numbers on the leading diagonal
- Confusion matrix in this case

		Predicted class					
Test Da	ata	Α	В	C			
Actual	Α	77	15	8			
class	В	5	88	7			
	C	9	2	89			

• Overall proportion of test patterns correctly classified is (77 + 88 + 89)/300 = 254/300 = 0.85

Performance measures

- Accuracy (correct classification rate) = 1 error rate
- Confusion matrix
- Precision, Recall
- F-measure (F1 score)

$$F_1 = 2 \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

• Receiver operating characteristic (ROC)

NB: measures shown in grey are non-examinable

Example: Classifying spoken vowels

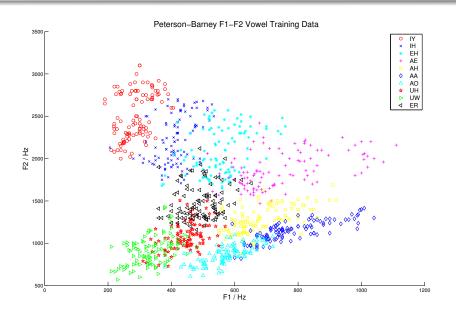
- 10 Spoken vowels in American English
- Vowels can be characterised by formant frequencies resonances of vocal tract
 - there are usually three or four identifiable formants
 - first two formants written as F1 and F2
- Peterson-Barney data recordings of spoken vowels by American men, women, and children
 - two examples of each vowel per person
 - for this example, data split into training and test sets
 - children's data not used in this example
 - different speakers in training and test sets
- (see http://en.wikipedia.org/wiki/Vowel for more)
- Classify the data using a Gaussian classifier
- Assume equal priors

The data

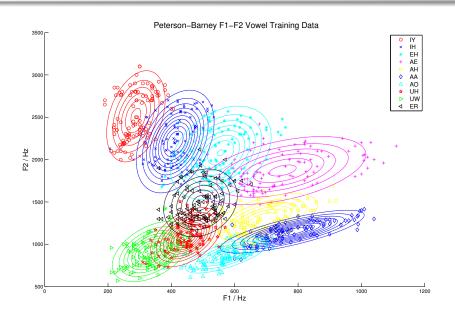
Ten steady-state vowels, frequencies of F1 and F2 at their centre:

- IY "bee"
- IH "big"
- EH "red"
- AE "at"
- AH "honey"
- AA "heart"
- AO "frost"
- UH "could"
- UW "you"
- ER "bird"

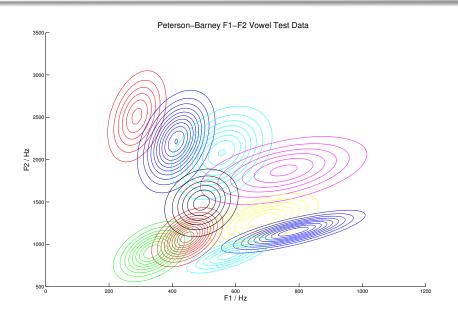
Vowel data — 10 classes



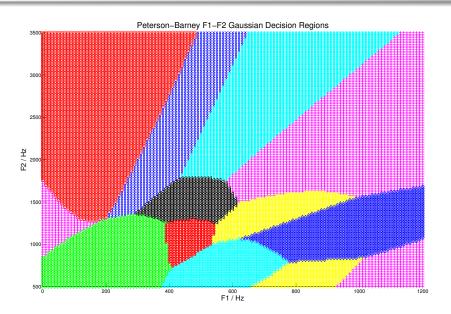
Data and Gaussians for each class



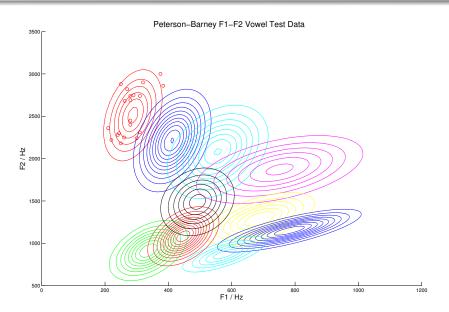
Gaussians for each class



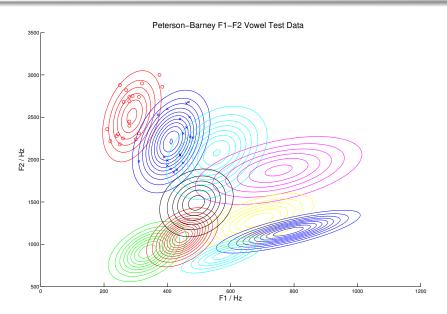
Decision Regions



Test data for class 1 (IY)



Test data for class 2 (IY)



Confusion matrix

	Predicted class											
	ΙΥ	ΙH	EH	ΑE	ΑH	AA	AO	UH	UW	ER	% corr.	
IY	20	0	0	0	0	0	0	0	0	0	100	
ΙH	0	20	0	0	0	0	0	0	0	0	100	
EH	0	0	15	1	0	0	0	0	0	4	75	
ΑE	0	0	3	16	1	0	0	0	0	0	80	
AH	0	0	0	0	18	2	0	0	0	0	90	
AA	0	0	0	0	2	17	1	0	0	0	85	
AO	0	0	0	0	0	4	16	0	0	0	80	
UH	0	0	0	0	2	0	0	18	0	0	90	
UW	0	0	0	0	0	0	0	5	15	0	75	
ER	0	0	0	0	0	0	0	2	0	18	90	

Total: 86.5% correct

Exercise

- ullet Consider estimating a covariance matrix Σ from a data set. Discuss what we could say about the data for the following situations:
 - Σ is almost diagonal (i.e. $\sigma_{ij} \approx 0$ for $i \neq j$).
 - $|\Sigma| \approx 0$.
- Q Give examples of data for each situation above.
- Discuss the minimum number of training samples required to have a covariance matrix that is invertible, i.e.
 - $|\Sigma|
 eq 0$. (Hint: think D=1 first, and D=2, and so on.)

Summary

- Covariance matrix
- Using Bayes' theorem with pdfs
- Log probability ratio (log odds)
- The Gaussian classifier: 1-dimensional and multi-dimensional
- Classification examples
- Evaluation measures. Confusion matrix

Familiarise yourself with vector/matrix operations, using pens and papers! (as well as computers)