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Today’s Schedule

Real-valued distributions and Gaussians

1 Continuous random variables

2 The Gaussian distribution (one-dimensional)

3 Maximum likelihood estimation

4 The multidimensional Gaussian distribution
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Discrete to continuous random variables

Fish example again:

c∗ = arg max
c

P(c |x) = arg max
c

P(x |c)P(c)

P(x)
= arg max

c
P(x |c)P(c)

What if the number of bins →∞ ? (i.e. the width of bin → 0)

P(X = x |C ) will be almost 0 everywhere!

We instead consider a cumulative distribution function (cdf)
with a continuous random variable:

F (x) = P(X ≤ x)
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Cumulative distribution functions graphed
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Cumulative distribution function properties

Cumulative distribution functions have the following properties:

1 F (−∞) = 0;

2 F (∞) = 1;

3 If a ≤ b then F (a) ≤ F (b).

To obtain the probability of falling in an interval we can do the
following:

P(a < X ≤ b) = P(X ≤ b)− P(X ≤ a)

= F (b)− F (a)
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Probability density function (pdf)

The rate of change of the cdf gives us the probability
density function (pdf) , p(x):

p(x) =
d

dx
F (x) = F ′(x)

F (x) =

∫ x

−∞
p(x) dx

p(x) is not the probability that X has value x . But the
pdf is proportional to the probability that X lies in a small
interval [x , x + dx ].

Notation: p for pdf, P for probability
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pdf and cdf

The probability that the random variable lies in interval (a, b)
is given by:

P(a < X ≤ b) = F (b)− F (a)

=

∫ b

−∞
p(x) dx −

∫ a

−∞
p(x) dx

=

∫ b

a

p(x) dx
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pdf and cdf

The probability that the random variable lies in interval (a, b)
is the area under the pdf between a and b:
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The Gaussian distribution

The Gaussian (or Normal) distribution is the most
common (and easily analysed) continuous distribution

It is also a reasonable model in many situations (the
famous “bell curve”)

If a (scalar) variable has a Gaussian distribution, then it
has a probability density function with this form:

p(x |µ, σ2) = N(x ;µ, σ2) =
1√

2πσ2
exp

(−(x − µ)2

2σ2

)

NB: exp(f (x)) = ef (x)

The Gaussian is described by two parameters:

the mean µ (location)
the variance σ2 (dispersion)
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Natural exponential function

y = ex = exp(x)
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Plot of Gaussian distribution

Gaussians have the same shape, with the location
controlled by the mean, and the spread controlled by the
variance

One-dimensional Gaussian with zero mean and unit
variance (µ = 0, σ2 = 1)

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

p(
x|

m
,s

)

pdf of Gaussian Distribution

mean=0
variance=1

Inf2b - Learning: Lecture 8 Real-valued distributions and Gaussians 11

Another plot of a Gaussian
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Properties of the Gaussian distribution

N(x ;µ, σ2) =
1√

2πσ2
exp

(−(x − µ)2

2σ2

)
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Facts about the Gaussian distribution

A Gaussian can be used to describe approximately any
random variable that tends to cluster around the mean

Concentration:

About 68% of values drawn from a normal distribution
are within one SD away from the mean
About 95% are within two SDs
About 99.7% lie within three SDs of the mean

Inf2b - Learning: Lecture 8 Real-valued distributions and Gaussians 14

Central Limit Theorem

Under certain conditions, the sum of a large number of
random variables will have approximately normal
distribution.

Several other distributions are well approximated by the
Normal distribution:

Binomial B(n, p), when n is large and p is not too close
to 1 or 0
Poisson Po(λ) when λ is large
Other distributions including chi-squared and Student’s
T

The Wikipedia entry on the Gaussian distribution is good
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Parameter estimation form data

Estimate the mean and variance parameters of a Gaussian
from data {x1, x2, . . . , xN}
Sample mean and sample variance (unbiased) estimates:

µ̂ =
1

N

N∑

n=1

xn

σ̂2 =
1

N−1

N∑

n=1

(xn − µ̂)2

Maximum likelihood estimates (MLE):

µ̂ML =
1

N

N∑

n=1

xn

σ̂2
ML =

1

N

N∑

n=1

(xn − µ̂ML)
2
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Example: Gaussians

A pattern recognition problem has two classes, S and T .
Some observations are available for each class:

Class S 10 8 10 10 11 11
Class T 12 9 15 10 13 13

The mean and variance of each pdf are estimated with MLE.

S : mean = 10; variance = 1
T : mean = 12; variance = 4

p(x |S) =
1√

2π · 1
exp

(
−(x − 10)2

2 · 1

)

p(x |T ) =
1√

2π · 4
exp

(
−(x − 12)2

2 · 4

)
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Example: Gaussians (cont.)

Sketch the pdf for each class. cf. the histograms
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Parameter estimation as an optimisation problem

Given an observation (training) set of N samples:
D = {x1, x2, . . . , xN}

How can we estimate the mean µ and variance σ2 of the
population?

Define the problem as an optimisation problem

Maximum Likelihood (ML) estimation:

max
µ,σ2

p(D |µ, σ2)

NB: ML is just a one criterion for parameter estimation
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ML estimation of a univariate Gaussian pdf

Assumption:
Samples D = {xn}Nn=1 are drawn independently from the
same distribution (i.i.d.)

Likelihood:

p(D |µ, σ2) = p(x1, . . . , xN |µ, σ2)

= p(x1 |µ, σ2) · · · p(xN |µ, σ2) =
N∏

n=1

p(xn |µ, σ2)

= L(µ, σ2 | D)

Optimisation problem:
Find such parameters µ and σ2 that maximise the
likelihood:

max
µ,σ2

L(µ, σ2 | D)
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ML estimation of a univariate Gaussian pdf (cont.)

The log likelihood: NB: the natural log (ln) is assumed

LL(µ, σ2 | D) = ln L(µ, σ2 | D) = ln
N∏

n=1

p(xn |µ, σ2)

=
N∑

n=1

ln p(xn |µ, σ2)

=
N∑

n=1

ln

(
1√

2πσ2
exp

(−(xn − µ)2

2σ2

))

= −N

2
ln(2π)− N

2
ln
(
σ2
)
−

N∑

n=1

(xn − µ)2

2σ2
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ML estimation of a univariate Gaussian pdf (cont.)

LL(µ, σ2 | D) = −N

2
ln(2π)− N

2
ln
(
σ2
)
−

N∑

n=1

(xn − µ)2

2σ2

∂LL(µ, σ2 | D)

∂µ
= 2

N∑

n=1

xn − µ
2σ2

= 0

⇒ µ̂ =
1

N

N∑

n=1

xn

∂LL(µ̂, σ2 | D)

∂σ2
= −N

2

1

σ2
+

N∑

n=1

(xn − µ̂)2

2(σ2)2
= 0

⇒ σ2 =
1

N

N∑

n=1

(xn − µ̂)2
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Examples of parameter estimation with MLE
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The multidimensional Gaussian distribution

The D-dimensional vector x = (x1, . . . , xD)T is
multivariate Gaussian if it has a probability density
function of the following form:

p(x |µ,Σ) =
1

(2π)D/2|Σ|1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

The pdf is parameterised by the mean vector
µ = (µ1, . . . , µD)T and the covariance matrix Σ = (σij).

The 1-dimensional Gaussian is a special case of this pdf

The argument to the exponential 1
2
(x − µ)TΣ−1(x − µ)

is referred to as a quadratic form.
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Covariance matrix

The mean vector µ is the expectation of x :

µ = E [x]

The covariance matrix Σ is the expectation of the
deviation of x from the mean:

Σ = E [(x− µ)(x− µ)T ]

Σ is a D × D symmetric matrix: ΣT = Σ

σij = E [(xi − µi)(xj − µj)] = E [(xj − µj)(xi − µi)] = σji .

The sign of the covariance σij helps to determine the
relationship between two components:

If xj is large when xi is large, then (xj − µj)(xi − µi ) will
tend to be positive;
If xj is small when xi is large, then (xj − µj)(xi − µi ) will
tend to be negative.
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Covariance matrix (cont.)

Σ =




σ11 σ12 · · · · · · · · · σ1D
σ21 σ22 · · · · · · · · · σ2D

...
...

. . .
...

...
... σii

...
...

...
. . .

...
σD1 σD2 · · · · · · · · · σDD




σ2i = σii

|Σ| = det(Σ) : determinant
e.g. for D = 2,

|Σ| =

∣∣∣∣
a b
c d

∣∣∣∣ = a× d − b × c

See dimensionality reduction with PCA in
Lecture Slides (3).
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Parameter estimation

Maximum likelihood estimation (MLE):

µ = E [x]

µ̂ML =
1

N

N∑

n=1

xn

Σ = E [(x− µ)(x− µ)T ]

Σ̂ML =
1

N

N∑

n=1

(xn − µ̂ML)(xn − µ̂ML)T
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Correlation matrix

The covariance matrix is not scale-independent: Define the
correlation matrix R of correlation coefficients ρij :

R = (ρij)

ρij =
σij√
σiiσjj

ρii = 1

Scale-independent (ie independent of the measurement
units) and location-independent, ie:

ρ(xi , xj) = ρ(axi + b, cxj + d) for a > 0, c > 0

The correlation coefficient satisfies −1 ≤ ρ ≤ 1, and

ρ(x , y) = +1 if y = ax + b a > 0

ρ(x , y) = −1 if y = ax + b a < 0
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Spherical Gaussian
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2-D Gaussian with a diagonal covariance matrix
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2-D Gaussian with a full covariance matrix
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Example of parameter estimation of a 2D Gaussian

µ̂ =
1

N

N∑

n=1

xn, Σ̂ =
1

N

N∑

n=1

(xn − µ̂)(xn − µ̂)T

x :

(
5
1

)
,

(
5
2

)
,

(
7
2

)
,

(
7
3

)

4 5 6 7 8

1

2

3

x
1

x
2

µ=
1

4

{[
5
1

]
+

[
5
2

]
+

[
7
2

]
+

[
7
3

]}
=

[
6
2

]

xn−µ :

(
−1
−1

)
,

(
−1
0

)
,

(
1
0

)
,

(
1
1

)

Σ =
1

4

{[
−1
−1

][
−1,−1

]
+

[
−1
0

][
−1,0

]
+

[
1
0

][
1,0
]

+

[
1
1

][
1,1
]}

=

(
1 1

2
1
2

1
2

)
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Example (cont.)

µ̂i =
1

N

N∑

n=1

xni , σ̂ij =
1

N

N∑

n=1

(xni − µ̂i)(xnj − µ̂j)

x :

(
5
1

)
,

(
5
2

)
,

(
7
2

)
,

(
7
3

)

µ1 = 1
4(5 + 5 + 7 + 7) = 6

µ2 = 1
4(1 + 2 + 2 + 3) = 2

x−µ :

(
−1
−1

)
,

(
−1
0

)
,

(
1
0

)
,

(
1
1

)

Σ : σ11 = 1
4((−1)2 + (−1)2 + 12 + 12) = 1

σ12 = 1
4((−1) · (−1) + (−1) · 0 + 1 · 0 + 1 · 1) = 1

2

σ22 = 1
4((−1)2 + 02 + 02 + 12) = 1

2
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Practical issues

Parameter estimation of multivariate Gaussian distribution can
be difficult.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-4 -3 -2 -1 0 1 2 3 4

x
2

x1

True pdf (black) and estimated pdf (red) when N=30

[4 1]
[1 1]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-4 -3 -2 -1 0 1 2 3 4

x
2

x1

True pdf (black) and estimated pdf (red) when N=1000

[4 1]
[1 1]

N = 30 N = 1000

Inf2b - Learning: Lecture 8 Real-valued distributions and Gaussians 34

Exercise

Try Q3, Q4, Q5 in Tutorial 3

Try Q3 in Tutorial 4

Try Q4 in Tutorial 4, and

Find Σ−1i for i = 1, 2.

Find |Σi | for i = 1, 2.

Find the correlation matrix for each class.
What the covariance matrix and pdf will be if the naive
Bayes assumption is applied?
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Exercise (cont.)

Additional to Q3 in Tutorial 4:
The sample variance (σ2

ML) is the maximum likelihood
estimate for the variance parameter of a one-dimensional
Gaussian. Consider the log likelihood of a set of N data points
x1, . . . , xN being generated by a Gaussian with the mean µ and
variance σ2.

L = ln p({x1, . . . , xN} |µ, σ2) = −1

2

N∑

n=1

(
(xn − µ)2

σ2
+ lnσ2 + ln(2π)

)

Assuming that the mean µ is know, show that that maximum
likelihood estimate for the variance is indeed the sample
variance.
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Summary

Gaussians

Continuous random variable: cumulative distribution
function and probability density function

Univariate Gaussian pdf:

p(x |µ, σ2) = N(x ;µ, σ2) =
1√

2πσ2
exp

(−(x − µ)2

2σ2

)

Multivariate Gaussian pdf:

p(x |µ,Σ) =
1

(2π)D/2|Σ|1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

Estimate parameters (mean and covariance matrix) using
maximum likelihood estimation

Try Lab-6 (next week)
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