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Real-valued distributions and Gaussians

@ Continuous random variables
© The Gaussian distribution (one-dimensional)
© Maximum likelihood estimation

@ The multidimensional Gaussian distribution
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Fish example again:

Lengths of male fish Lengths of female fish

P(x|c)P(c)
P(x)

o What if the number of bins — oo ? (i.e. the width of bin — 0)

e P(X = x|C) will be almost 0 everywhere!

¢* = arg max P(c|x) = arg max = arg max P(x|c)P(c)

@ We instead consider a cumulative distribution function (cdf)
with a continuous random variable:

F(x) = P(X <x)
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Cumulative distribution functions graphed

Cumulative distribution function properties

Probability density function (pdf)

Lengths of male fish Lengths of female fish

025 - 0.25
b - Cumulative distribution functions have the following properties: @ The rate of change of the cdf gives us the probability
. B @ F(—o0) =0; density function (pdf) , p(x):
@ F(oo) =1, J ,
oos | Q Ifa< b then F(a) < F(b). plx) = F(x) = F(x)
0 g 0 J X
° g s en * ’ * engn s e * To obtain the probability of falling in an interval we can do the F(x) / p(x) dx
1 : . / 1 : : following: -
T / 1 @ p(x) is not the probability that X has value x. But the
< = < — < . . - .o
$0f / 1 4°° Pla<X<b) P(X <b) - P(X < a) pdf is proportional to the probability that X lies in a small
Toat 1 o = F(b) - F(a) interval [x, x + dx].
0-2 1 @ Notation: p for pdf, P for probability
0 — . L 0 . : .
R S
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pdf and cdf

pdf and cdf

The Gaussian distribution

The probability that the random variable lies in interval (a, b)
is given by:
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The probability that the random variable lies in interval (a, b)
is the area under the pdf between a and b:
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@ The Gaussian (or Normal) distribution is the most
common (and easily analysed) continuous distribution

o It is also a reasonable model in many situations (the
famous “bell curve”)

o If a (scalar) variable has a Gaussian distribution, then it
has a probability density function with this form:

—(x— u)2>

202

1
plxL11,0%) = N(x; 1,0%) = ——— exp (
2no?

NB: exp(f(x)) = )
@ The Gaussian is described by two parameters:

o the mean p (location)
o the variance o2 (dispersion)
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Natural exponential function

Plot of Gaussian distribution

Another plot of a Gaussian
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@ Gaussians have the same shape, with the location
controlled by the mean, and the spread controlled by the
variance

@ One-dimensional Gaussian with zero mean and unit
variance (1 = 0,02 = 1)

pat 8f Gaussian Distribution

-4 = ) ] [ T 2 3 4
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Properties of the Gaussian distribution

Facts about the Gaussian distribution

Central Limit Theorem

1 —(x — p)?
N(x; p,0%) = > exp( (2021))

pdfs of Gaussian distributions

1 / N(x; p, 0?)dx = 1

p(x|m,s)

f . 2y _
lim N(x;1,0%) = 6x — )

(Dirac delta function)
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@ A Gaussian can be used to describe approximately any
random variable that tends to cluster around the mean
@ Concentration:
o About 68% of values drawn from a normal distribution
are within one SD away from the mean
o About 95% are within two SDs
o About 99.7% lie within three SDs of the mean

-
=]

34.1% 34.1%

00 01 02 03

Real-valued distributions and Gaussians
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@ Under certain conditions, the sum of a large number of
random variables will have approximately normal
distribution.

o Several other distributions are well approximated by the
Normal distribution:

o Binomial B(n, p), when n is large and p is not too close
to1lor0

o Poisson P,(A) when X is large

e Other distributions including chi-squared and Student’s
T

@ The Wikipedia entry on the Gaussian distribution is good

Inf2b - Learning: Lecture 8 Real-valued distributions and Gaussians 15

Parameter estimation form data

Example: Gaussians

Example: Gaussians (cont)

o Estimate the mean and variance parameters of a Gaussian
from data {x1, %, ..., xn}

@ Sample mean and sample variance (unbiased) estimates:

1 N
p’:N;Xn
7 = S o )
n=1

1N
I]ML_N;XH
2 1 A N2
Oy = N Z (Xn - /J'ML)
=1
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A pattern recognition problem has two classes, S and T.
Some observations are available for each class:

Class S [10 8 10 10 11 11

Class T |12 9 15 10 13 13

The mean and variance of each pdf are estimated with MLE.

S: mean = 10; variance =1

T : mean = 12; variance = 4

1 _ (x—10)?
pxIS) = \/27r-1eXp< 2-1 )

p(X|T) =

1 (x —12)?
Vora P\ 2
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Sketch the pdf for each class. cf. the histograms

0.5 m 1

p(x]S)

p(x)

0.1 p(x|T) 1

A
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Parameter estimation as an optimisation problem

ML estimation of a univariate Gaussian pdf

ML estimation of a univariate Gaussian pdf (cont)

@ Given an observation (training) set of N samples:
D= {XI‘X27 ce 7XN}

@ How can we estimate the mean y and variance o2 of the
population?

@ Define the problem as an optimisation problem

Maximum Likelihood (ML) estimation:
max p(D |, )
02

NB: ML is just a one criterion for parameter estimation
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Assumption:
Samples D = {x,}_, are drawn independently from the
same distribution (i.i.d.)

Likelihood:
p(D 11,0

plxt,- o s 0%) .

= p(xa | 0%) - plxw |, 0%) = [ [ plxa | 1, 0%)
= L(u, 02| D) =
Optimisation problem:

Find such parameters 1 and o2 that maximise the
likelihood:

max L(u, 02 | D)
o?
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The log likelihood:

NB: the natural log (In) is assumed
N

LL(p,0*| D) = InL(p,0?| D) = In [ [ pOxn | 1. 0?)
n=1

N
=Y Inp(x|p,0?)
n=1

(e (5)

N 2

N N 5 (Xn_ﬂ)
:75|n(2ﬂ)*5|n(0)727

n=1
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ML estimation of a univariate Gaussian pdf (cont)

Examples of parameter estimation with MLE

The multidimensional Gaussian distribution

N
N N (xn — 12)?
LL(p,0%| D) = —=In(27) — = In (c?) = Y 7
2 2 () ; 202 o The D-dimensional vector x = (xy,...,xp)7 is
o o e e multivariate Gaussian if it has a probability density
ALL(p, 0| D) N o — function of the following form:
o e (x4, %) > S = 1) S (- )
= x|, X)= —F>=sexp | —=(x— X — .
1 N PIXIH, (m)przie P\ 7 H H
L1 :
= 0= N an o The pdf is parameterised by the mean vector
n=1 B = (pu,...,up)T and the covariance matrix ¥ = (o).
O N Y
M = 4 Z (0 — A1) =0 ! N @ The 1-dimensional Gaussian is a special case of this pdf
0o? 202 & 20?)? N o 1000
L = o The argument to the exponential (x — p) TS (x — p)
2 _ NY is referred to as a quadratic form.
= o=y ;(X,, Q)
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Covariance matrix Covariance matrix (cont.) Parameter estimation
@ The mean vector p is the expectation of x:
” P o 012 1D Maximum likelihood estimation (MLE):
p=E[x] 021 022 +*+ =+t 02p
@ The covariance matrix X is the expectation of the 5 : : :
deviation of x from the mea:: i p = E[x]
S = El(x - p)(x — )] o
Hme = N Z Xn
e Yisa D x D symmetric matrix: X7 =X Op1 Op2 cccocttoctt ODD =1

o = E[(x — 1) — )l = El0g — 1) (xi — p)l = 0 -
@ The sign of the covariance o;; helps to determine the
relationship between two components:
o If x; is large when x; is large, then (x; — 11;)(x; — p;) will
tend to be positive;
o If x; is small when x; is large, then (x; — ;) (x; — ;) will
tend to be negative.
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] O'I-2 = Ojj
@ [X| = det(X) : determinant
eg. for D=2,

a b
1zl =

c d

‘:axdfbxc

@ See dimensionality reduction with PCA in
Lecture Slides (3).
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Correlation matrix

Spherical Gaussian

2-D Gaussian with a diagonal covariance matrix

The covariance matrix is not scale-independent: Define the
correlation matrix R of correlation coefficients pj;:

R =(py)
T
= Jaioy
/)/'/'71

@ Scale-independent (ie independent of the measurement
units) and location-independent, ie:
p(xi, %) = paxi + b, cx; + d)

@ The correlation coefficient satisfies —1 < p < 1, and
plx,y) = +1

/)(va) =-1

fora>0,c>0

fy=ax+b a>0
ify=ax+b a<0
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‘Surtace plot of px,, x,)

Contouepot ot p, 5,

Inf2b - Learning: Lecture 8  Real-valued distributions and Gaussians 29

Surtace plotof plx,, x,)

Contourpiototps, 1,
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2-D Gaussian with a full covariance matrix

Example of parameter estimation of a 2D Gaussian

Example (cont)

Surtace plot of pix, )
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NN =
S~—~

M=

N . . N
fii = 5 2% G =y D (e — 1) O — 1)

1

< (06 6)6)

Il
-

n:

p=25+5+7+7)=6
po=1(1+24+2+3)=2
(1) (-1 (1) (1
ko \-1)\o ) o) 1
S oon=3((-1)+(-1)2+12+13) =1
op=3((-1)- (-1)+(-1)-0+1-0+1-1) =13
022*%((—1)2+02+02+12):%
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Practical issues

Exercise

Exercise (cont.)

Parameter estimation of multivariate Gaussian distribution can
be difficult.

True pdf (black) and estimated pdf (red) when N30 True pdf (black) and estimated pdf (red) when N=1000

N = 1000
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o Try Q3, Q4, Q5 in Tutorial 3
@ Try Q3 in Tutorial 4

o Try Q4 in Tutorial 4, and
o Find =1 for i = 1,2.
e Find |X;| for i =1,2.
o Find the correlation matrix for each class.
o What the covariance matrix and pdf will be if the naive
Bayes assumption is applied?
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Additional to Q3 in Tutorial 4:

The sample variance (0%, ) is the maximum likelihood
estimate for the variance parameter of a one-dimensional
Gaussian. Consider the log likelihood of a set of N data points
Xi, ..., Xy being generated by a Gaussian with the mean p and
variance o2.

L=1Inp({x,...,xn}|1t,0%) = —%i <(X";72'u)2 +1Ino®+ In(27r)>

Assuming that the mean p is know, show that that maximum
likelihood estimate for the variance is indeed the sample
variance.
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Summary

[CEVSERS

o Continuous random variable: cumulative distribution
function and probability density function

o Univariate Gaussian pdf:

P _ 1 —(x = w)?
Pl %) = N 1%) =~ oxp (U

o Multivariate Gaussian pdf:

1 1 .
p(x|p,X) = WCXP (‘5(’( —p) = (x—p)

o Estimate parameters (mean and covariance matrix) using
maximum likelihood estimation

@ Try Lab-6 (next week)
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