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Today's Schedule

Real-valued distributions and Gaussians

@ Continuous random variables
© The Gaussian distribution (one-dimensional)
© Maximum likelihood estimation

@ The multidimensional Gaussian distribution
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Discrete to continuous random variables

Fish example again:

Lengths of male fish Lengths of female fish
1 1 20 1 1
Leng m Leng m
P(x|c)P
c* = arg max P(c|x) = arg max Pixic)P(c) = arg max P(x|c)P(c)
c c P(X) c

@ What if the number of bins — oo 7 (i.e. the width of bin — 0)
e P(X = x|C) will be almost 0 everywhere!

@ We instead consider a cumulative distribution function (cdf)
with a continuous random variable:

F(x) = P(X < x)
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Cumulative distribution functions graphed
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Cumulative distribution function properties

Cumulative distribution functions have the following properties:
Q F(—o0)=0;
Q@ F(o0)=1;
@ If a<b then F(a) < F(b).

To obtain the probability of falling in an interval we can do the
following:

Pla< X <b) = P(X<b)—P(X< a)
= F(b) - F(a)
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Probability density function (pdf)

@ The rate of change of the cdf gives us the probability
density function (pdf) , p(x):

p() = S F(x) = F(x)
F(x) = /_X p(x) dx

@ p(x) is not the probability that X has value x. But the
pdf is proportional to the probability that X lies in a small
interval [x, x + dx].

@ Notation: p for pdf, P for probability
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pdf and cdf

The probability that the random variable lies in interval (a, b)
is given by:
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pdf and cdf

The probability that the random variable lies in interval (a, b)

is the area under the pdf between a and b:

0.25

(x)
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The Gaussian distribution

@ The Gaussian (or Normal) distribution is the most
common (and easily analysed) continuous distribution

@ It is also a reasonable model in many situations (the
famous “bell curve”)

o If a (scalar) variable has a Gaussian distribution, then it
has a probability density function with this form:

1 —(x—n)?
exp | ————%—
2102 P 202

NB: exp(f(x)) = e/
@ The Gaussian is described by two parameters:

o the mean p (location)
o the variance o2 (dispersion)

p(x|p,0%) = N(x; p,0%) =
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Natural exponential function

y = e* = exp(x)

y=ex
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y = exp(—x?)

y = e'(x'2)

. [\

o

exp(-x2)
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~
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Plot of Gaussian distribution

@ Gaussians have the same shape, with the location
controlled by the mean, and the spread controlled by the
variance

@ One-dimensional Gaussian with zero mean and unit
variance (= 0,02 = 1)

pdf of Gaussian Distribution
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Another plot of a Gaussian
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Properties of the Gaussian distribution

1 —(x — p)?
M)~ o (L)

pdfs of Gaussian distributions

1.6 T T ‘l T T |

= i >
1.2 b02s [ 1 / N(x; p, 0%)dx = 1

| _
1 | ‘ i [e’e]

p(x|m, s)

lim N(x; p, 0%) = 6(x — )
o—0

(Dirac delta function)

Inf2b - Learning: Lecture 8 Real-valued distributions and Gaussians

13



Facts about the Gaussian distribution

@ A Gaussian can be used to describe approximately any
random variable that tends to cluster around the mean

@ Concentration:

o About 68% of values drawn from a normal distribution
are within one SD away from the mean

o About 95% are within two SDs

e About 99.7% lie within three SDs of the mean

=+
g,

0.2 03

34.1% 34.1%
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Central Limit Theorem

@ Under certain conditions, the sum of a large number of
random variables will have approximately normal
distribution.

@ Several other distributions are well approximated by the
Normal distribution:

e Binomial B(n, p), when n is large and p is not too close
tolor0

o Poisson P,(A) when X is large

e Other distributions including chi-squared and Student'’s
T

@ The Wikipedia entry on the Gaussian distribution is good
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Parameter estimation form data

@ Estimate the mean and variance parameters of a Gaussian
from data {x1,x,...,xn}
@ Sample mean and sample variance (unbiased) estimates:

1 N
ﬂ:N;Xn
A2:I\I112N:(Xn_,a)2

n=1

@ Maximum likelihood estimates (MLE):
1 N
Hme = N an
Ou = Z NML
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Example: Gaussians

A pattern recognition problem has two classes, S and T.
Some observations are available for each class:

Class S |10 8 10 10 11 11

Class T |12 9 15 10 13 13

The mean and variance of each pdf are estimated with MLE.

S: mean = 10; variance =1
T : mean = 12; variance = 4

p(x|S) = \/zjr—l exp (_(><2—11()))

X —12)2
p(x|T) = \/;Tﬁexp <—( 2‘142) )

Inf2b - Learning: Lecture 8 Real-valued distributions and Gaussians 17



Example: Gaussians (cont)

Sketch the pdf for each class.

cf. the histograms
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Parameter estimation as an optimisation problem

@ Given an observation (training) set of N samples:
D= {x1,%,...,xn}

@ How can we estimate the mean y and variance o of the
population?

@ Define the problem as an optimisation problem

Maximum Likelihood (ML) estimation:
max p(D | 1,0%)
w02

NB: ML is just a one criterion for parameter estimation

Inf2b - Learning: Lecture 8 Real-valued distributions and Gaussians 19



ML estimation of a univariate Gaussian pdf

Assumption:
Samples D = {x,}M_, are drawn independently from the
same distribution (i.i.d.)

Likelihood:

p(D|u,02):p(xl,...,x,v\u,az) N

= p(a |, 0%) -+ pOw | 1,0%) = [ [ pGa | 11, 07)
= L(4,0%| D)
Optimisation problem:

Find such parameters y and 02 that maximise the
likelihood:

max L(u, 0 | D)
w02
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ML estimation of a univariate Gaussian pdf (cont)

The log likelihood: NB: the natural log (In) is assumed
N

LL(p, 0| D) = InL(n,0°| D) = In [ [ p(xa | 11, 0%)
n=1

N
=3 (s 1)
n=1

S (e (5
= = In(2m) = = In (0%) — EN: %

n=1
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ML estimation of a univariate Gaussian pdf (cont)

LL(p,0%| D) = —g In(27) — = In (0®) — Z O — 1)

OLL(u, 0% | D) A
o — 202
1N
= ,&ZN;X”
OLL(p,0*|D) _ _gi+i<xn—m2 .
Jo? 202 c 2(0?)? B
LN
2 _ A2
= 0 —N;(Xn—u)
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Examples of parameter estimation with MLE

True pdf (black) and estimated pdf (red) when N=30 True pdf (black) and estimated pdf (red) when N=1000

true|
estimated|
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The multidimensional Gaussian distribution

@ The D-dimensional vector x = (x1,...,xp)" is
multivariate Gaussian if it has a probability density
function of the following form:

plxl1:%) = s oo (50— 7S k)]

The pdf is parameterised by the mean vector
p = (p1,-..,pp)" and the covariance matrix ¥ = (o).

@ The 1-dimensional Gaussian is a special case of this pdf

@ The argument to the exponential (x — p) X7 (x — p)
is referred to as a quadratic form.
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Covariance matrix

@ The mean vector p is the expectation of x:

p = E[x]
@ The covariance matrix X is the expectation of the
deviation of x from the mean:

2 =E[(x - p)(x—p)']
@ Y isa D x D symmetric matrix: X7 =3
o = E[(xi — i) (x; — m)] = E[0g — p)(xi — pi)] = 3 -
@ The sign of the covariance o helps to determine the
relationship between two components:
o If x; is large when Xx; is large, then (x; — 1;)(x; — pi) will
tend to be positive;

o If x;j is small when x; is large, then (x; — p;)(x;i — ;) will
tend to be negative.
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Covariance matrix (cont.)

0‘11 0‘12 “ e e “ e “ e 0‘1D
0'21 0'22 “ e “ e “ e O'2D
3=
Oji
O'Dl 0’D2 “ e “ e “ e O'DD

2 _ 5.
@ 07 =0j

@ |X| = det(X) : determinant
e.g. for D =2,
5| = a b

d

':axd—bxc

@ See dimensionality reduction with PCA in
Lecture Slides (3).
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Parameter estimation

Maximum likelihood estimation (MLE):

p = E[x]
LN
ﬂML - N ; Xn
S = El(x — w)(x— 1))
LN
YL = N nz_; (%0 — L) (X0 — i) "
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Correlation matrix

The covariance matrix is not scale-independent: Define the
correlation matrix R of correlation coefficients pj;:

R =(py)
T
SN
[,),',':1

@ Scale-independent (ie independent of the measurement
units) and location-independent, ie:
p(xi, x;) = p(ax; + b, cx; + d) fora>0,c>0

@ The correlation coefficient satisfies —1 < p < 1, and

p(x,y) =+1 ify=ax+b a>0
p(x,y)=-1 ify=ax+b a<0
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Spherical Gaussian

Surface plot of p(x,, x,)
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2-D Gaussian with a diagonal covariance matrix

Surface plot of p(x,, X,)

Contour plot of p(x,. ;)
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2-D Gaussian with a full covariance matrix

Surface

e plot of p(x,, X,)

Inf2b - Learning: Lecture 8

Contour plot of p(x,. ;)
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Example of parameter estimation of a 2D Gaussian

BEE
@60
s {spa- oo} (1)
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Example (cont.)

N
Hi = NZX”“ Uu NZ Xni — XnJ ﬂj)

@;, ©)-6).0)

54+5+7+7)=6
1+2+2+3)=2

e GO0
(F12+ (-1 +12+12) =1

(-1)-(-1)+(-1)-04+1-04+1-1)=1
(12 +0*+0°+1?) =3

ENTEE N
—~~

9 Q9 9
N R R
N N R
Bl D= D=
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Practical issues

Parameter estimation of multivariate Gaussian distribution can
be difficult.

True pdf (black) and estimated pdf (red) when N=30 True pdf (black) and estimated pdf (red) when N=1000

N =30 N = 1000
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Exercise

e Try Q3, Q4, Q5 in Tutorial 3
e Try Q3 in Tutorial 4
e Try Q4 in Tutorial 4, and
o Find ;! for i = 1,2.
o Find |3 for i =1,2.
e Find the correlation matrix for each class.

e What the covariance matrix and pdf will be if the naive
Bayes assumption is applied?
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Exercise (cont.)

Additional to Q3 in Tutorial 4:

The sample variance (03, ) is the maximum likelihood
estimate for the variance parameter of a one-dimensional
Gaussian. Consider the log likelihood of a set of N data points

Xy, ..., Xy being generated by a Gaussian with the mean p and
variance o2.

1 N L — 2
L=Inp({x,...,xn}|p,0%) = _5,72:; (% +Ino? + In(27r))

Assuming that the mean p is know, show that that maximum
likelihood estimate for the variance is indeed the sample
variance.
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Summary

Gaussians

@ Continuous random variable: cumulative distribution
function and probability density function

@ Univariate Gaussian pdf:

@ Multivariate Gaussian pdf:

Pl . B) = sz o 3k~ )2 x— )

o Estimate parameters (mean and covariance matrix) using
maximum likelihood estimation

@ Try Lab-6 (next week)
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