Inf2b - Learning

Lecture 7: Text Classification using Naive Bayes

Hiroshi Shimodaira (Credit: Iain Murray and Steve Renals)

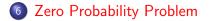
Centre for Speech Technology Research (CSTR) School of Informatics University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/inf2b/ https://piazza.com/ed.ac.uk/spring2020/infr08028 Office hours: Wednesdays at 14:00-15:00 in IF-3.04

Jan-Mar 2020

Today's Schedule

- 2 Bag-of-words models
- Multinomial document model
- 4 Bernoulli document model
- Generative models



Spam?

I got your contact information from your country's information directory during my desperate search for someone who can assist me secretly and confidentially in relocating and managing some family fortunes.

Spam?

Dear Dr. Steve Renals, The proof for your article, Combining Spectral Representations for Large-Vocabulary Continuous Speech Recognition, is ready for your review. Please access your proof via the user ID and password provided below. Kindly log in to the website within 48 HOURS of receiving this message so that we may expedite the publication process.

Identifying Spam

Spam?

Congratulations to you as we bring to your notice, the results of the First Category draws of THE HOLLAND CASINO LOTTO PROMO INT. We are happy to inform you that you have emerged a winner under the First Category, which is part of our promotional draws.

Text Classification using Bayes Theorem

- Document \mathcal{D} , with a fixed set of classes $\mathcal{C} = \{1, \dots, K\}$
- Classify \mathcal{D} as the class with the highest posterior probability:

$$k_{\max} = \arg \max_{k} P(C_{k} | \mathcal{D}) = \arg \max_{k} \frac{P(\mathcal{D} | C_{k}) P(C_{k})}{P(\mathcal{D})}$$
$$= \arg \max_{k} P(\mathcal{D} | C_{k}) P(C_{k})$$

- How do we represent \mathcal{D} ?
- How do we estimate $P(\mathcal{D} | C_k)$ and $P(C_k)$?

How do we represent \mathcal{D} ?

- A sequence of words: D = (X₁, X₂,..., X_n) computational very expensive, difficult to train
- A set of words (Bag-of-Words)
 - Ignore the position of the word
 - Ignore the order of the word
 - Consider the words in pre-defined vocabulary V (D = |V|)

Multinomial document model a document is represented by an integer feature vector, whose elements indicate frequency of corresponding word in the document

$$\mathbf{x} = (x_1, \dots, x_D) \qquad x_i \in \mathcal{N}_0$$

Bernoulli document model a document is represented by a binary feature vector, whose elements indicate absence or presence of corresponding word in the document

$$\mathbf{b} = (b_1, \ldots, b_D) \qquad b_i \in \{0, 1\}$$

BoW models: Bernoulli vs. Multinomial

Document \mathcal{D} : "Congratulations to you as we bring to your notice, the results of the First Category draws of THE HOLLAND CASINO LOTTO PROMO INT. We are happy to inform you that you have emerged a winner under the First Category, which is part of our promotional draws."

Term $(w_t \in V)$	$\begin{array}{ l l l l l l l l l l l l l l l l l l l$	$\begin{array}{c} Bernoulli \ (b_t \in \{0,1\}) \\ \mathbf{b} = (b_t) \end{array}$
bring	1	1
can	0	0
casino	1	1
category	2	1
congratulations	1	1
draws	2	1
first	2	1
lotto	1	1
the	4	1
true	0	0
winner	1	1
you	3	1
D = 12	$\mathbf{x} = (1, 0, 1, 2, \dots, 1, 3)$	$\mathbf{b} = (1,0,1,1,\ldots,1,1)$

Notation for document model

• Training documents:

Class	Documents		
<i>C</i> ₁	$\mathcal{D}_1^{(1)}\dots\mathcal{D}_i^{(1)}\dots\mathcal{D}_{N_1}^{(1)}$		
÷			
Ск	$\mathcal{D}_1^{(K)} \dots \mathcal{D}_i^{(K)} \dots \mathcal{D}_{N_K}^{(K)}$		

• Flattened representation of training data:

Documents	\mathcal{D}_1	 \mathcal{D}_i	 \mathcal{D}_N
Class indicator	Z_{1k}	 Z _{ik}	 Z _{Nk}

where
$$N = N_1 + \dots + N_K$$
,
 $z_{ik} = \left\{ egin{array}{c} 1 & ext{if } \mathcal{D}_i ext{ belongs to class } C_k \\ 0 & ext{otherwise} \end{array}
ight.$

• Test document : ${\cal D}$

Discrete probability distributions - review

Bernoulli distribution

Eg: Tossing a biased coin (P(H) = p), the probability of $k = \{0, 1\}$ 0:Tail, 1:Head is $P(k) = kp + (1-k)(1-p) = p^k(1-p)^{1-k}$

Binomial distribution

Eg: Tossing a biased coin n times, the probability of observing Head k times is

$$P(k) = \binom{n}{k} p^k (1-p)^{n-k}. \qquad \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Multinomial distribution

Eg: Tossing a biased dice *n* times, the probability of $\mathbf{x} = (x_1, x_2, x_3, x_4, x_5, x_6)$, where x_i is the number of occurrences for face *i*, is

$$P(\mathbf{x}) = \frac{n!}{x_1! \cdots x_6!} p_1^{x_1} p_2^{x_2} p_3^{x_3} p_4^{x_4} p_5^{x_5} p_6^{x_6}.$$

Classification with multinomial document model

Assume a test document \mathcal{D} is given as a sequence of words: (o_1, o_2, \dots, o_n) $o_i \in V = \{w_1, \dots, w_D\}$ Feature vector: $\mathbf{x} = (x_1, \dots, x_D)$ \cdots word frequencies, $\sum_{i=1}^{D} x_i = n$

Document likelihood with multinomial distribution:

$$P(\mathbf{x} \mid C_k) = \frac{n!}{\prod_{t=1}^{D} x_t!} \prod_{t=1}^{D} P(w_t \mid C_k)^{X_t} \qquad \text{NB: } P^0 = 1 \ (P > 0)$$

For classification, we can omit irrelevant term, so that:

$$P(\boldsymbol{x} \mid C_k) \propto \prod_{t=1}^{D} P(w_t \mid C_k)^{X_t} = P(o_1 \mid C_k) P(o_2 \mid C_k) \cdots P(o_n \mid C_k)$$
$$P(C_k \mid \boldsymbol{x}) \propto P(C_k) \prod_{i=1}^{n} P(o_i \mid C_k)$$

Training of multinomial document model

Features: $\mathbf{x} = (x_1, \dots, x_D)$: word frequencies in a doc. Training data set



Multinomial doc. model – example

See Note 7!

Classification with Bernoulli document model

A test document \mathcal{D} with feature vector $oldsymbol{b} = (b_1, \dots, b_D)$

Document likelihood with (multivariate) Bernoulli distribution:

$$P(b | C_k) = \prod_{t=1}^{D} P(b_t | C_k) = \prod_{t=1}^{D} [b_t P(w_t | C_k) + (1 - b_t)(1 - P(w_t | C_k))]$$

= $\prod_{t=1}^{D} P(w_t | C_k)^{b_t} (1 - P(w_t | C_k))^{(1 - b_t)}$
 $\hat{P}(w_t | C_k) = \frac{n_k(w_t)}{N_k}$
(fraction of class k docs with word w_t)

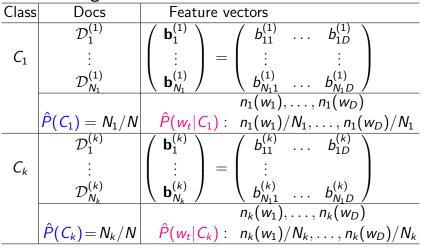
In Classification,

$$P(C_k \mid \boldsymbol{b}) \propto P(C_k) P(\boldsymbol{b} \mid C_k)$$

Training of Bernoulli document model

Features: $\mathbf{b} = (b_1, \dots, b_D)$: D = |V|, i.e. vocabulary *binary vector* of word occurrences in a document

Training data set



Classify documents as Sports (S) or Informatics (I)

Vocabulary V:

- $w_1 = goal$
- $w_2 = tutor$
- $w_3 = variance$
- $w_4 = speed$
- $w_5 = drink$
- $w_6 = defence$
- $w_7 = performance$
- $w_8 = field$

$$D = |V| = 8$$

Bernoulli doc. model – example (cont.)

Training data: (rows give documents, columns word presence) $\mathbf{B}^{\text{Sport}} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \end{pmatrix}$

Estimating priors and likelihoods: $P(S) = 6/11, \quad P(I) = 5/11$ $(P(w_t|S)) = (3/6 \ 1/6 \ 2/6 \ 3/6 \ 3/6 \ 4/6 \ 4/6 \ 4/6 \)$ $(P(w_t|I)) = (1/5 \ 3/5 \ 3/5 \ 1/5 \ 1/5 \ 1/5 \ 3/5 \ 1/5 \)$

Bernoulli doc. model – example (cont.)

Test documents:
$$b_1 = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$

Priors, Likelihoods: P(S) = 6/11, P(I) = 5/11 $(P(w_t|S)) = (3/6 \ 1/6 \ 2/6 \ 3/6 \ 3/6 \ 4/6 \ 4/6 \ 4/6 \)$ $(P(w_t|I)) = (1/5 \ 3/5 \ 3/5 \ 1/5 \ 1/5 \ 1/5 \ 3/5 \ 1/5 \)$

Posterior probabilities:

$$P(S \mid \boldsymbol{b}_{1}) \propto P(S) \prod_{t=1}^{\circ} [b_{1t}P(w_{t} \mid S) + (1 - b_{1t})(1 - P(w_{t} \mid S))]$$

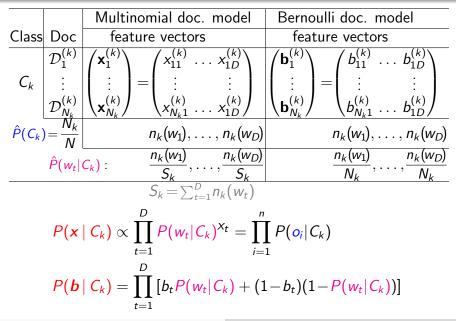
$$\propto \frac{6}{11} \left(\frac{1}{2} \times \frac{5}{6} \times \frac{2}{3} \times \frac{1}{2} \times \frac{1}{2} \times \frac{2}{3} \times \frac{1}{3} \times \frac{2}{3}\right) = \frac{5}{891} = 5.6 \times 10^{-3}$$

$$P(I \mid \boldsymbol{b}_{1}) \propto P(I) \prod_{t=1}^{8} [b_{1t}P(w_{t} \mid I) + (1 - b_{1t})(1 - P(w_{t} \mid I))]$$

$$\propto \frac{5}{11} \left(\frac{1}{5} \times \frac{2}{5} \times \frac{2}{5} \times \frac{1}{5} \times \frac{1}{5} \times \frac{1}{5} \times \frac{2}{5} \times \frac{1}{5}\right) = \frac{8}{859375} = 9.3 \times 10^{-6}$$

 \Rightarrow Classify this document as S.

Summary of the document models



What's the approximate value of: P("the" | C) (a) in the Bernoulli model

(b) in the multinomial model?

Common words, 'stop words', are often removed from feature vectors.

Generative models

 Models that generate observable data randomly based on a distribution

$$\mathbf{P}(\mathbf{X}) \longrightarrow x_1, x_2, x_3, \cdots$$

- Examples
 - Coin tossing models

Coin	Generated data sequence
Fair coin $(P(H)=P(T)=0.5)$	$H, T, T, H, T, H, H, T, \ldots$
Unfair coin $(P(H)=0.7, P(T)=0.3)$	$T, H, H, H, H, H, T, H, \ldots$

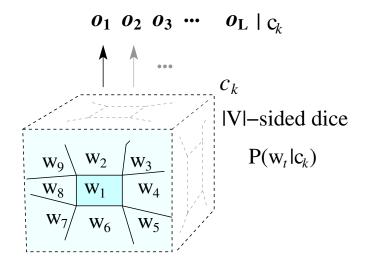
• Dice throwing models

Dice	Generated data sequence
Unbiased dice $(P(X) = 1/6, X \in \{1,, 6\})$	$2, 4, 3, 5, 3, 6, 5, 5, 4, 6, \ldots$
Biased dice $(P(X)) = (0.1, 0.1, 0.1, 0.1, 0.2, 0.4)$	$6, 6, 5, 5, 6, 1, 2, 6, 6, 6, \ldots$

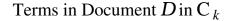
• Spam mail generator

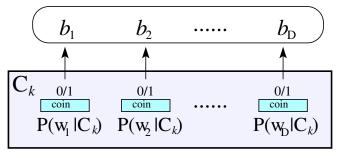
Congratulations to you as we bring to your notice, ... o_1 o_2 o_3 o_4 o_5 o_6 o_7 o_8 o_9 ... P(OlSpam)

Generative model — Multinomial document model



Generative model — Bernoulli document model





Word relative-frequencies of spam emails

of spam emails: 169

to	0.0395032	from	0.00664282	http	0.00369482
the	0.0383633	content	0.00644629	money	0.00345898
you	0.0267285	have	0.0059353	by	0.00338037
of	0.0257851	bank	0.0059353	or	0.00330176
and	0.0252349	usd	0.00581738	name	0.00322314
your	0.0222476	on	0.00554223	funds	0.00322314
in	0.0200857	we	0.00542432	was	0.00318384
i	0.0198892	it	0.00518848	type	0.00318384
this	0.0145828	are	0.00507056	S	0.00318384
а	0.0138752	transfer	0.00479541	0a	0.00314453
my	0.0132463	our	0.0047561	if	0.00310522
for	0.0132463	com	0.00467749	1	0.00310522
is	0.0112024	am	0.00467749	can	0.00306592
3d	0.0108879	account	0.00455957	payment	0.002948
with	0.00915845	unlocked	0.00424512	message	0.002948
will	0.00876538	20	0.0041665	address	0.00286938
that	0.00849023	email	0.00404858	us	0.00283008
as	0.00797925	please	0.00385205	his	0.00279077
me	0.00766479	not	0.00377344	contact	0.00279077
be	0.00703589	all	0.00377344	has	0.00271216

Inf2b - Learning: Lecture 7

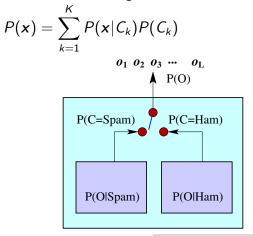
Text Classification using Naive Bayes

of kin good your the part of with and atm to new from which projects has the transfer my how 3d and with united in in o beneficiary that died pathak id efforts has to studies have my as can you the 3d you your with transfer will your a your m and the your i is ve country user nokia the this for i value banking an click confirm world i it me my country is 2010 very below i and now until html of position http here of mail following there be while the by for your willing

Generative models for classification

Model for classification $P(C_k | \mathbf{x}) = \frac{P(\mathbf{x} | C_k) P(C_k)}{P(\mathbf{x})} \propto P(\mathbf{x} | C_k) P(C_k)$

Model for observation · · · generative model



Smoothing in multinomial document model

• Zero probability problem

$$P(\mathbf{x} \mid C_k) \propto \prod_{t=1}^{D} P(w_t \mid C_k)^{X_t} = 0 \text{ if } \exists j : P(w_j \mid C_k) = 0$$
$$P(w_t \mid C_k) = \frac{\sum_{i=1}^{N} x_{it} z_{ik}}{\sum_{t'=1}^{|V|} \sum_{i=1}^{N} x_{it'} z_{ik}} = \frac{n_k(w_t)}{\sum_{t'=1}^{D} n_k(w_{t'})}$$

Smoothing – a 'trick' to avoid zero counts:

$$P(w_t \mid C_k) = \frac{1 + \sum_{i=1}^{N} x_{it} z_{ik}}{|V| + \sum_{t'=1}^{|V|} \sum_{i=1}^{N} x_{it'} z_{ik}} = \frac{1 + n_k(w_t)}{D + \sum_{t'=1}^{D} n_k(w_{t'})}$$

Known as Laplace's rule of succession or add one smoothing.

Multinomial vs Bernoulli doc. models

	Multinomial	Bernoulli	
Generative model	draw a words from	draw a document from	
	a multinomial distribu-	a multi-dimensional	
	tion	Bernoulli distribution	
Document repre-	Vector of frequencies	Binary vector	
sentation			
Multiple occur-	Taken into account	Ignored	
rences			
Document length	Longer docs OK	Best for short docs	
Feature vector di-	Longer OK	Shorter	
mension			
Behaviour with	$P(" ext{the}" C_k) pprox 0.05$	$P($ "the" $ C_k) \approx 1.0$	
"the"			
Non-occurring	do not affect likelihood	affect likelihood	
words in test doc			

Fig. 1 in A. McCallum and K.Nigam, "A Comparison of Event Models for Naive Bayes Text Classification", AAAI Workshop on Learning for Text Categorization, 1998

• Stop-word removal

Remove pre-defined common words that are not specific or discriminatory to the different classes.

Stemming

Reduce different forms of the same word into a single word (base/root form)

Feature selection

e.g. choose words based on the mutual information

Use the Bernoulli model and the Naive Bayes assumption for the following.

Consider the vocabulary $V = \{apple, banana, computer\}$. We have two classes of documents F (fruit) and E (electronics). There are four training documents in class F; they are listed below in terms of the number of occurrences of each word from V in each document:

- apple(2); banana(1); computer(0)
- apple(0); banana(1); computer(0)
- apple(3); banana(2); computer(1)
- apple(1); banana(0); computer(0)

There are also four training documents in class *E*:

- apple(2); banana(0); computer(0)
- apple(0); banana(0); computer(1)
- apple(3); banana(1); computer(2)
- apple(0); banana(0); computer(1)

- Write the training data as a matrix for each class, where each row corresponds to a training document.
- 2 Estimate the prior probabilities from the training data
- So For each class (*F* and *E*) and for each word (apple, banana and computer) estimate the likelihood of the word given the class.
- Onsider two test documents:
 - apple(1); banana(0); computer(0)
 - apple(1); banana(1); computer(0)

For each test document, estimate the posterior probabilities of each class given the document, and hence classify the document.

Use the Multinomial model and the Naive Bayes assumption for the following.

Consider the vocabulary $V = \{ fish, chip, circuit \}$. We have two classes of documents F (food) and E (electronics). There are four training documents in class F; they are listed below;

- fish chip fish
- chip
- circuit fish chip
- fish fish

There are also four training documents in class *E*:

- circuit circuit
- chip circuit
- chip chip
- circuit

- Estimate the parameters of a multinomial model for the two document classes, using add-one smoothing.
- 2 Consider two test documents:
 - fish chip
 - chip circuit chip circuit fish chip circuit

Classify each of the test documents by (approximately) estimating the posterior probability of each class

With reference to the test documents in the previous question, explain why a process such as add-one smoothing is used when estimating the parameters of a multinomial model.

Exercise 3

Consider two writers, Baker and Clark, who were twins, and who published four and six children's books, respectively. The following table shows the frequencies of four words, **wizard**, **river**, **star**, and **warp**, with respect to the first page of each book, and the information whether the book was a bestseller or not.

	Words				
Author	wizard	river	star	warp	Bestseller
Baker	1	1	1	0	No
Baker	1	1	0	1	No
Baker	1	1	1	1	yes
Baker	1	1	0	0	Ňo
Clark	0	1	0	1	No
Clark	0	0	2	1	No
Clark	0	2	1	2	Yes
Clark	1	1	1	2	No
Clark	0	1	2	2	Yes
Clark	0	1	2	1	Yes

Two unpublished book drafts, Doc 1 and Doc 2, were found after the death of the writers, but it's not clear which of them wrote the documents.

Exercise 3 (cont.)

- Without having any information about Doc 1 and Doc 2, decide the most probable author of each document in terms of minimum classification error, and justify your decision.
- The same analysis of word frequencies was carried out for Doc 1 and Doc 2, whose result is shown below. Using the Naive Bayes classification with the multinomial document model without smoothing, find the author of each document.

	wizard	river	start	warp
Doc 1	2	1	1	0
Doc 2	1	1	2	1

- In addition to modifications to the vocabulary, discuss two possible methods for improving the classification performance.
- Another document, Doc 3, was found later, and a publisher is considering its publication. Assuming the Naive Bayes classification with the multinomial document model with no smoothing, without identifying the author, predict whether Doc 3 is likely to be a bestseller or not based on the word frequency table for Doc 3 shown below.

	wizard	river	start	warp
Doc 3	0	1	1	2

Using the same situations as in part (d) except that we now know the author of Doc 3 was Baker, predict whether Doc 3 is likely to be a bestseller or not.

Summary

- Our first 'real' application of Naive Bayes
- Two BoW models for documents: Multinomial and Bernoulli
- Generative models
- Smoothing (Add-one/Laplace smoothing)
- Good reference:

C. Manning, P. Raghavan and H. Schütze, Introduction to Information Retrieval, University Press. 2008. See Chapter 13 Text classification & Naive Bayes

• As always:

be able to implement, describe, compare and contrast (see Lecture Note)