Inf2b - Learning Lecture 6: Naive Bayes

Hiroshi Shimodaira (Credit: Iain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR) School of Informatics University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/inf2b/ https://piazza.com/ed.ac.uk/spring2020/infr08028 Office hours: Wednesdays at 14:00-15:00 in IF-3.04

Jan-Mar 2020

Today's Schedule

- 2 The curse of dimensionality
- 3 Naive Bayes
- Text classification using Naive Bayes (introduction)

Bayes decision rule (recap)

Class $C = \{1, \ldots, K\}$; C_k to denote C = k; input features $X = \mathbf{x}$

Most probable class: (maximum posterior class)

$$k_{\max} = \arg \max_{k \in C} P(C_k | \mathbf{x}) = \arg \max_{k} \frac{P(\mathbf{x} | C_k) P(C_k)}{\sum_{j=1}^{K} P(\mathbf{x} | C_j) P(C_j)}$$

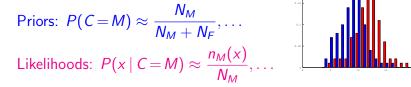
= $\arg \max_{k} P(\mathbf{x} | C_k) P(C_k)$
where $P(C_k | \mathbf{x})$: posterior
 $P(\mathbf{x} | C_k)$: likelihood
 $P(C_k)$: prior

⇒ Minimum error (misclassification) rate classification (PRML C. M. Bishop (2006) Section 1.5)

Fish classification (revisited)

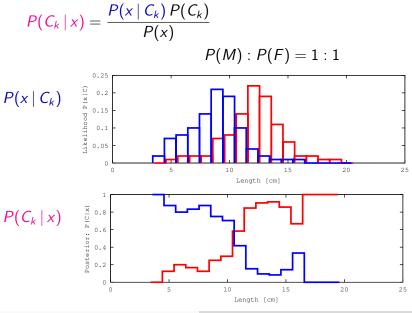
Bayesian class estimation:

$$P(C_k \mid x) = \frac{P(x \mid C_k) P(C_k)}{P(x)} \propto P(x \mid C_k) P(C_k)$$



NB: These approximations work well only if we have enough data

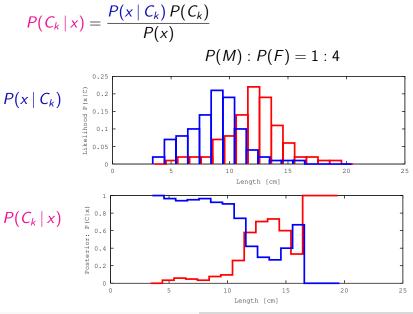
Fish classification (revisited)



Inf2b - Learning: Lecture 6

Naive Bayes

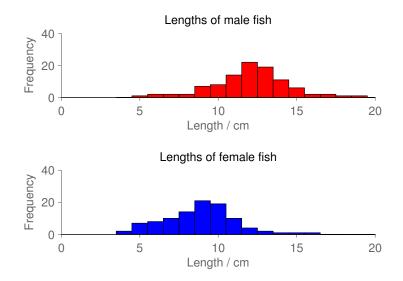
Fish classification (revisited)



Inf2b - Learning: Lecture 6

Naive Bayes

How can we improve the fish classification?



More features!?



In high dimensions almost all $n_{C_k}(x_1, \ldots, x_D)$ are zero

 \Rightarrow Bellman's "curse of dimensionality"

Avoiding the Curse of Dimensionality

Apply the chain rule?

$$P(\mathbf{x} | C_k) = P(x_1, x_2, \dots, x_D | C_k)$$

= $P(x_1 | C_k) P(x_2 | x_1, C_k) P(x_3 | x_2, x_1, C_k) P(x_4 | x_3, x_2, x_1, C_k) \cdots$
 $\cdots P(x_{d-1} | x_{d-2}, \dots, x_1, C_k) P(x_D | x_{D-1}, \dots, x_1, C_k)$

Solution: assume structure in $P(x | C_k)$

For example,

- Assume x_{d+1} depends on x_d only $P(\mathbf{x} | C_k) \approx P(x_1 | C_k) P(x_2 | x_1, C_k) P(x_3 | x_2, C_k) \cdots P(x_D | x_{D-1}, C_k)$
- Assume $x \in \mathcal{R}^D$ distributes in a low dimensional vector space
 - Dimensionality reduction by PCA (Principal Component Analysis) / KL-transform

Avoiding the Curse of Dimensionality (cont.)

- Apply smoothing windows (e.g. Parzen windows)
- Apply a probability distribution model (e.g. Normal dist.)
- Assume x_1, \ldots, x_D are conditionally independent given class

⇒ Naive Bayes rule/model/assumption (or *idiot Bayes rule*)

 $P(x_1, x_2, ..., x_D | C_k) = P(x_1 | C_k) P(x_2 | C_k) \cdots P(x_D | C_k)$

$$=\prod_{d=1}^{D}P(x_d|C_k)$$

• Is it reasonable?

Often not, of course! Although it can still be *useful*.

Example - game played depending on the weather

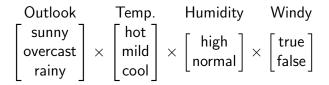
Outlook	Temperature	Humidity	Windy	Play
sunny	hot	high	false	NO
sunny	hot	high	true	NO
overcast	hot	high	false	YES
rainy	mild	high	false	YES
rainy	cool	normal	false	YES
rainy	cool	normal	true	NO
overcast	cool	normal	true	YES
sunny	mild	high	false	NO
sunny	cool	normal	false	YES
rainy	mild	normal	false	YES
sunny	mild	normal	true	YES
overcast	mild	high	true	YES
overcast	hot	normal	false	YES
rainy	mild	high	true	NO

 $P(Play \mid O, T, H, W) = \frac{P(O, T, H, W \mid Play) P(Play)}{P(O, T, H, W)}$

Weather data - how to calculate probabilities?

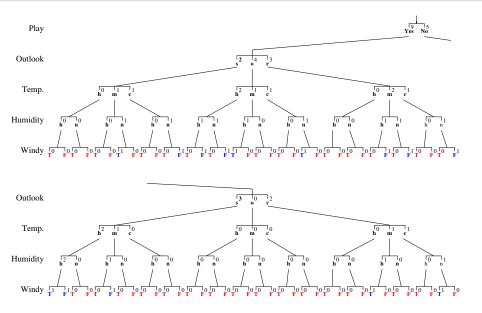
$$P(Play \mid O, T, H, W) = \frac{P(O, T, H, W \mid Play) P(Play)}{P(O, T, H, W)}$$

If we use histograms for this 4D data: $n_{Play}(O, T, H, W)$



of bins in the histogram = $3 \times 3 \times 2 \times 2 = 36$ # of samples available = 9 for play:yes, 5 for play:no

Weather data - tree representation



$$P(Play \mid O, T, H, W) = \frac{P(O, T, H, W \mid Play) P(Play)}{P(O, T, H, W)}$$
$$\propto P(O, T, H, W \mid Play) P(Play)$$

Applying the Naive Bayes rule,

P(O, T, H, W | Play) = P(O|Play) P(T|Play) P(H|Play) P(W|Play)

Weather data summary

Counts

Outlook		Temperature		Humidity			Windy			Play			
	Υ	Ν		Υ	Ν		Υ	Ν		Υ	Ν	Y	Ν
sunny	2	3	hot	2	2	high	3	4	f	6	2	9	5
overc	4	0	mild	4	2	norm	6	1	t	3	3		
rainy	3	2	cool	3	1								

Relative frequencies P(x|Play = Y), P(x|Play = N)

	Outlook Temperature		Humidity			Windy			Play				
	Y	Ν		Y	Ν		Y	Ν		Y	Ν	P(Y)	P(N)
s	2/9	3/5	h	2/9	2/5	h	3/9	4/5	f	6/9	2/5	9/14	5/14
0	4/9	0/5	m	4/9	2/5	n	6/9	1/5	t	3/9	3/5		
r	3/9	2/5	с	3/9	1/5						,		

Test example

Inf2b - Learning: Lecture 6

Naive Bayes

Weather data summary (Ver.2)

Counts

Play	Outlook			Temp.			Hun	nidity	Windy	
	sunny	overc	rainy	hot	mild	cool	high	norm	False	True
Yes 9	2	4	3	2	4	3	3	6	6	3
No 5	3	0	2	2	2	1	4	1	2	3

Relative frequencies P(x|Play)

ΡI	ay	Outlook			Temp.			Hun	nidity	Windy	
	P(Play)	sunny	overc	rainy	hot	mild	cool	high	norm	False	True
Y	9/14	2/9	4/9	3/9	2/9	4/9	3/9	3/9	6/9	6/9	3/9
Ν	5/14	3/5	0/5	2/5	2/5	2/5	1/5	4/5	1/5	2/5	3/5

Test example

Inf2b - Learning: Lecture 6

Posterior prob. of "play" given x = (sunny, cool, humid, windy) $P(Play | \mathbf{x}) \propto P(\mathbf{x} | Play) P(Play)$

$$P(\mathsf{Play} = Y | \mathbf{x}) \propto P(O = s | Y) P(T = c | Y) P(H = h | Y) P(W = t | Y) P(Y)$$
$$\propto \frac{2}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} \cdot \frac{9}{14} \approx 0.0053$$

$$P(\text{Play}=N \mid \mathbf{x}) \propto P(O=s|N) P(T=c|N) P(H=h|N) P(W=t|N) P(N)$$

$$\propto \frac{3}{5} \cdot \frac{1}{5} \cdot \frac{4}{5} \cdot \frac{3}{5} \cdot \frac{5}{14} \approx 0.0206$$

Exercise: find the odds of play, $P(play = Y | \mathbf{x}) / P(play = N | \mathbf{x})_{(answer in notes)}$

Easy and cheap:

Record counts, convert to frequencies, score each class by multiplying prior and likelihood terms $P(C_k | \mathbf{x}) \propto \left(\prod_{d=1}^{D} P(x_d | C_k)\right) P(C_k)$

Statistically viable:

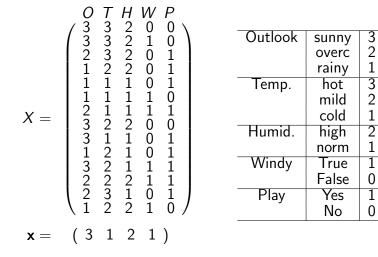
Simple count-based estimates work in 1D

Often overconfident:

Treats dependent evidence as independent

Another approach for the weather example

- What about applying k-NN?
- Data representation (by quantification)



1

Another approach for the weather example (cont.)

- *k*-NN
- Sorted distance between X(:,1:4) and **x**

rank	dist.	idx	label	 rank	dist.	idx	label
1	1.41	(7)	Y	 1	1.41	(8)	Ν
2	1.41	(8)	Ν	2	1.41	(12)	Y
3	1.41	(9)	Y	3	2.00	(2)	Ν
4	1.41	(11)	Y	4	2.24	(1)	Ν
5	1.41	(12)	Y	5	2.24	(7)	Y
6	2.00	(2)	Ν	6	2.24	(9)	Y
7	2.24	(1)	Ν	7	2.24	(11)	Y
8	2.24	(6)	Ν	8	2.24	(14)	Ν
9	2.24	(14)	Ν	9	2.45	(3)	Y
10	2.45	(3)	Y	10	2.45	(4)	Y
11	2.45	(4)	Y	11	2.83	(6)	Ν
12	2.45	(5)	Y	12	3.00	(5)	Y
13	2.65	(10)	Y	13	3.16	(10)	Y
14	2.65	(13)	Y	14	3.16	(13)	Υ

where the values for Humidity were doubled.

Another approach for the weather example (cont.)

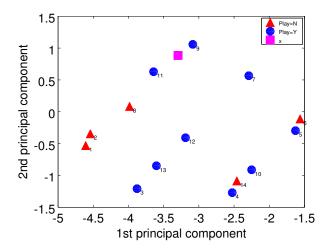
• Correlation matrix for (O, T, H, W, P)

	0	Т	Н	W	Р
0	1.00000	0.33541	0.16903	0.00000	-0.17638
Т	0.33541	1.00000	0.56695	-0.19094	-0.19720
Н	0.16903	0.56695	1.00000	0.00000	-0.44721
W	0.00000	-0.19094	0.00000	1.00000	-0.25820
Р	-0.17638	-0.19720	-0.44721	-0.25820	1.00000

NB: Humidity has the largest (negative) correlation with Play.

Another approach for the weather example (cont.)

• Dimensionality reduction by PCA



Exercise (past exam question)

The table gives a small dataset. Tick marks indicate which movies 3 children (marked c) and 4 adults (marked a) have watched. The final two rows give the movies watched by two users of the system of unknown age.

Apply maximum likelihood estimation of the priors and likelihoods to this data, using the naive Bayes assumption for the likelihoods. Hence find the odds that the test user y_i is child: $P(y_i = c | \text{data}) / P(y_i = a | \text{data})$ for i = 1, 2. State the MAP classification of each user.

Spam?

I got your contact information from your country's information directory during my desperate search for someone who can assist me secretly and confidentially in relocating and managing some family fortunes.

Spam?

Dear Dr. Steve Renals, The proof for your article, Combining Spectral Representations for Large-Vocabulary Continuous Speech Recognition, is ready for your review. Please access your proof via the user ID and password provided below. Kindly log in to the website within 48 HOURS of receiving this message so that we may expedite the publication process.

Identifying Spam

Spam?

Congratulations to you as we bring to your notice, the results of the First Category draws of THE HOLLAND CASINO LOTTO PROMO INT. We are happy to inform you that you have emerged a winner under the First Category, which is part of our promotional draws.

Question

How can we identify an email as spam automatically?

Text classification: classify email messages as spam or non-spam (ham), based on the words they contain

With the Bayes decision rule,

 $P(\mathsf{Spam}|\mathbf{x}_1,\ldots,\mathbf{x}_L) \propto P(\mathbf{x}_1,\ldots,\mathbf{x}_L|\mathsf{Spam})P(\mathsf{Spam})$

Using the naiave Bayes assumption,

 $P(\mathbf{x}_1, \dots, \mathbf{x}_L | \text{Spam}) = P(\mathbf{x}_1 | \text{Spam}) \cdots P(\mathbf{x}_L | \text{Spam})$

- The curse of dimensionality
- Approximation by the Naive Bayes rule
- Example: classifying multidimensional data using Naive Bayes
- Next lecture: Text classification using Naive Bayes