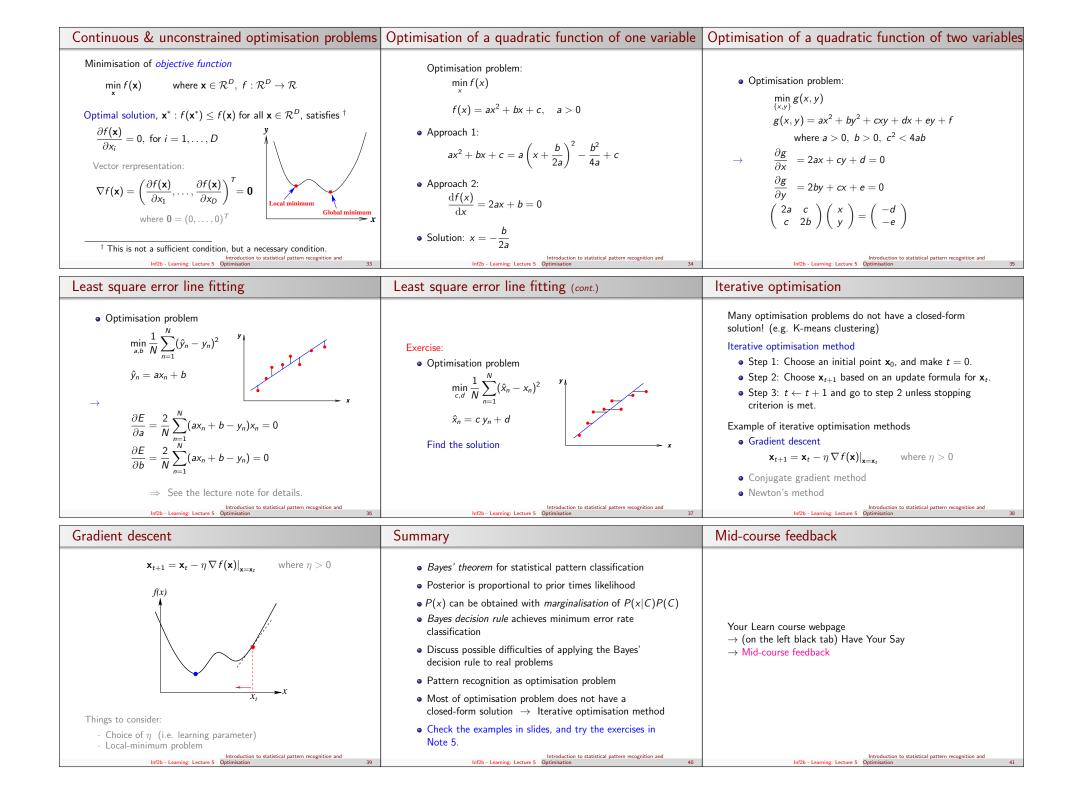

	Today's Schedule	Motivation for probability
Inf2b - Learning Lecture 5: Introduction to statistical pattern recognition and Optimisation <i>Hiroshi Shimodaira</i> (<i>Credit: lain Murray and Steve Renals</i>) Centre for Speech Technology Research (CSTR) School of Informatics University of Edinburgh http://www.inf.ed.ac.uk/teaching/courses/inf2b/ https://piazza.com/ed.ac.uk/spring2020/infr08028 Office hours: Wednesdays at 14:00-15:00 in IF-3.04	 Probability (review) What is Bayes' theorem for? Bayes decision rule More about probability Optimisation problems 	In some applications we need to: • Communicate uncertainty • Use prior knowledge • Deal with missing data (we cannot easily measure similarity)
Jan-Mar 2020 Introduction to statistical pattern recognition and Inf2b - Learning: Lecture 5 Optimisation 1	Introduction to statistical pattern recognition and Inf2b - Learning: Lecture 5 Optimisation 2	Introduction to statistical pattern recognition and Inf2b - Learning: Lecture 5 Optimisation 3
Warming up	Warming up (<i>cont.</i>)	Rules of Probability
 Throwing two dices Probability of {1,1}? Probability of {2,5}? Drawing two cards from a deck of cards Probability of {Club, Spade}? Probability of {Club, Club}? 	 Probability that a student in Informatics has eyeglasses? Probability that you live more than 90 years? When a real dice is thrown, is the probability of getting {1} ¹/₆? Theoretical probability vs. Empirical probability aka: relative frequency experimental probability for a sample set drawn from a population 	Random variablesEvents/values X $\{x_1, x_2, \dots, x_L\}$ Y Y $\{y_1, y_2, \dots, y_M\}$ Product Rule: $P(Y = y_j, X = x_i) = P(Y = y_j X = x_i) P(X = x_i)$ $= P(X = x_i Y = y_j) P(Y = y_j)$ Abbreviation: $P(Y, X) = P(Y X) P(X)$ $= P(X Y) P(Y)$ X and Y are independent iff: $P(X, Y) = P(X) P(Y)$ $P(X, Y) = P(X) P(Y)$ $P(X Y) = P(X), P(Y X) = P(Y)$ Introduction to statistical pattern recognition and Distinging Lecture 5 Optimisation
Rules of Probability (<i>cont.</i>)	Example: determining the sex of fish	Example: determining the sex of fish
Sum Rule: $P(X = x_i) = \sum_{j=1}^{M} P(X = x_i, Y = y_j)$ Abbreviation: $P(X) = \sum_{Y} P(X, Y)$	Histograms of fish lengths ($N_F = N_M = 100$) Lengths of male fish	Relative frequencies of fish length Lengths of male fish
RHS: Mariginalisation of the joint probability over Y. LHS: Marginal probability of X. Application: $P(X) = \sum_{Y} P(X Y) P(Y)$	Lengths of female fish	Lengths of female fish 0.4 0.2 0.2 0.2 0 0.2 0 0.2 0 0 0 0 0 0 0 0 0 0

5 10 15 20 Length / cm (NB: different example from the one in Note 5.) Inf2b - Learning: Lecture 5 Optimisation 9


Introduction to statistical pattern recognition and Inf2b - Learning: Lecture 5 Optimisation

Inf2b - Learning: Lecture 5 Optimisation

10

• Equal prior probabilities: $\frac{P(M x = 11)}{P(F x = 11)} = \frac{P(x = 11 M) P(M)}{P(x = 11 F) P(F)} = \frac{0.14 \cdot 0.5}{0.10 \cdot 0.5} = 1.4$ Classify it as male: • Twice as many females as males: (i.e., $P(M) = 1/3$, $P(F) = 2/3$). $\frac{P(M x = 11)}{P(F x = 11)} = \frac{P(x = 11 M) P(M)}{P(x = 11 F) P(F)} = \frac{0.14 \cdot 1/3}{0.10 \cdot 2/3} = 0.7$ Classify it as female Mr2- Leaving Letter 5 Optimized 22 Some more questions $\frac{P(C_k x)}{P(x x x x x x x x x x $	$\frac{P(\mathbf{x} \mid C_k) P(C_k)}{\sum_{j=1}^{K} P(\mathbf{x} \mid C_j) P(C_j)}$ $P(M) : P(F) = 1 : 4$
Some more questions More about probability Independence vs. zero. con	Introduction to statistical pattern recognition and 25 Optimisation 24
	orrelation
• Assume $P(M) = P(F) = 0.5$ • What is the value of $P(M X = 4)$? • What is the value of $P(F X = 18)$? • You observe data point $x = 22$. To which class should it be assigned? • Discuss how you could improve classification performance. • What if we increase the number of histogram bins? • What if we increase the number of samples? • What if we increase the number of samples? • What if we measure not only fish length but also weight? (How can we estimate probabilities?) • It seems that we can estimate $P(C x)$ directly from data, right? • Indeciden to statistical patter reception and the provention and right? • Indeciden to statistical patter reception and the provention of the provention of the provided for the statistical patter reception and the provention of the proventio	lent, $\rho_{XY} = 0$. relation_and_dependence -1), (0, 1), (1, 0), each of which of $\frac{1}{4}$. $\frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}$ $\frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8}$ $\frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8}$ P(X) P(Y) use dent -1 Introduction to statistical pattern recognition and
Optimisation problems we've seen Optimisation problems : other examples Types of optimisation pro	roblems
• Bayes decision rule (MAP decision rule) $k_{\max} = \underset{k \in C}{\arg \max} P(C_k \mathbf{x})$ • K-NN classification $c(\mathbf{z}) = \underset{j \in \{1, \dots, C\}}{\arg \max} \sum_{\substack{k \in C \\ (\mathbf{x}, c) \in U_k(\mathbf{z})}} \delta_{j, c}$ where $U_k(\mathbf{z})$ is the set of k nearest training examples to z. • K-means clustering $\min_{\substack{min \\ \{m_k\}_1^K \\ where \ E = \frac{1}{N} \sum_{\substack{k=1 n=1 \\ k=1 n=1}}^K \sum_{\substack{n \\ k=1 n=1}}^N z_{kn} \mathbf{x}_n - \mathbf{m}_k ^2$ • Dimensionality reduction to 2D with PCA $\max_{u \in V \\ u \in V $	optimisation ained optimisation timization-tree

