Inf2b - Learning

Lecture 4: Classification and nearest neighbours

Hiroshi Shimodaira (Credit: Iain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR)
School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/inf2b/ https://piazza.com/ed.ac.uk/spring2020/infr08028 Office hours: Wednesdays at 14:00-15:00 in IF-3.04

Jan-Mar 2020

Today's topics

- Classification
- Nearest neighbour classification
- Oecision boundary
- Tips on pre-processing data
- Generalisation and over-fitting

Types of learning problems

	System			
Data	input	output	Type of problem	Type of learning
x	{ x }	groups (subsets)	clustering	unsupervised learning
(\mathbf{x}, y)	×	y: discrete category	classification	supervised learning
(\mathbf{x}, y)	x	y: continuous value	regression	supervised learning

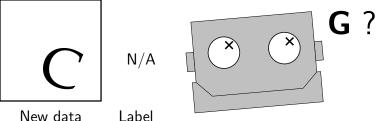
where $\mathbf{x} = (x_1, \dots, x_D)^T$: feature vector

y: target vector or scalar

e 4

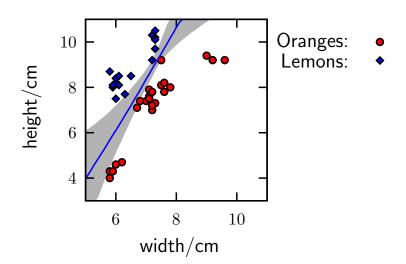
Supervised learning

Test mode Classification



Goal of training: develop a classifier of good generalisation

Supervised learning



Classification

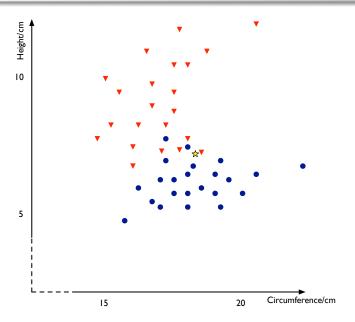
- The data has a feature vector $\mathbf{x} = (x_1, x_2, \dots, x_D)^T$ and a label $c \in \{1, \dots, C\}$
- Training set: A set of N feature vectors and their labels $(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_N, c_N)$
- Use a learning algorithm to train a classifier from a training set
- Test set: a set of feature vectors to which the classifier must assign labels – used for evaluation. (NB: training and test sets should be mutually exclusive)
- Error function: how accurate is the classifier? One option is to count the number of misclassifications:

$$\mathsf{Error}\ \mathsf{rate} = \frac{\#\ \mathsf{of}\ \mathsf{misclassified}\ \mathsf{samples}}{\#\ \mathsf{of}\ \mathsf{test}\ \mathsf{samples}}$$

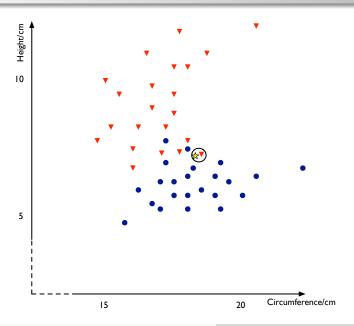
Nearest-neighbour classifier

- Nearest neighbour classification: label a test example to have the label of the closest training example
- K-nearest neighbour (K-NN) classification: find the K
 closest points in the training set to the test example;
 classify using a majority vote of the K class labels
- Training a K-nearest neighbour classifier is simple! —
 Just store the training set
- Classifying a test example requires finding the *K* closest training examples
 - This is computationally demanding if the training set is large — potentially need to compute the Euclidean distance between the test example and every training example
 - Data structures such as the kD-tree can make finding nearest neighbours much more efficient (in the average case)

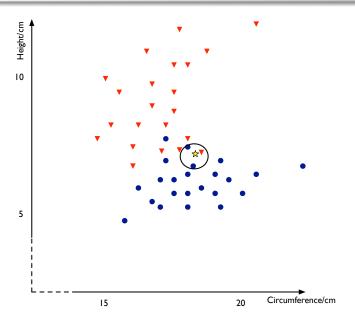
Classifying test data with K-nearest neighbours



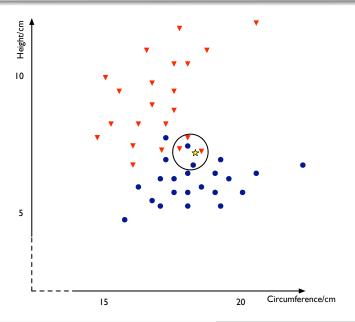
1-nearest neighbour



3-nearest neighbour



5-nearest neighbour



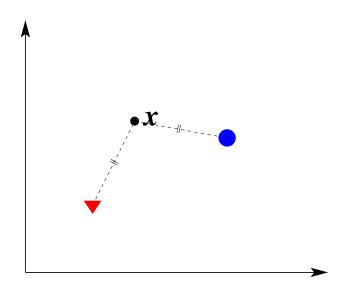
K-NN classification algorithm

For each test example $\mathbf{z} \in Z$:

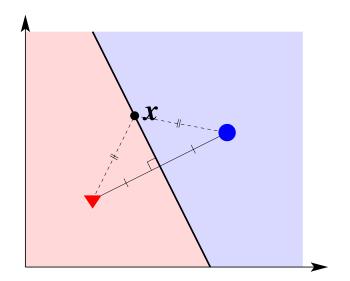
- Compute the distance $r(\mathbf{z}, \mathbf{x})$ between \mathbf{z} and each training example $(\mathbf{x}, c) \in X$
- Select $U_k(\mathbf{z}) \subseteq X$, the set of the k nearest training examples to \mathbf{z}
- Decide the class of **z** by the majority voting:

$$c(\mathbf{z}) = \underset{j \in \{1,...,C\}}{\operatorname{arg max}} \sum_{(\mathbf{x},c) \in U_k(\mathbf{z})} \delta_{jc}$$

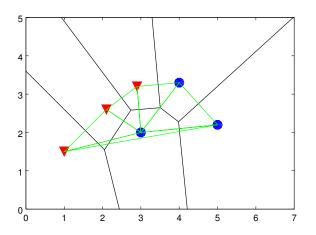
Geometry of nearest neighbour



Geometry of nearest neighbour – decision boundary and decision regions

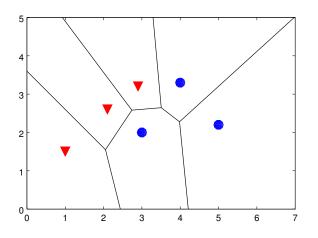


Geometry of nearest neighbour



Delaunay triangulation

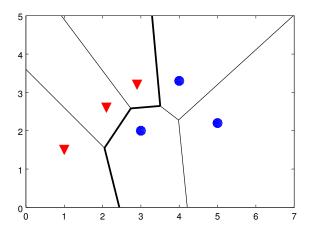
Voronoi tessellation



Voronoi diagram

Decision boundary

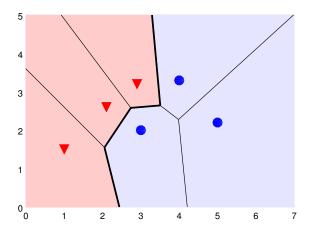
Decision boundary: boundary (surface) that partitions the vector space into subsets of different classes.



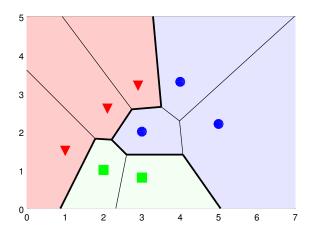
K-NN classification forms piecewise-linear decision boundary.

Decision regions

Decision regions: regions separated by the decision boundaries

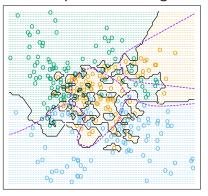


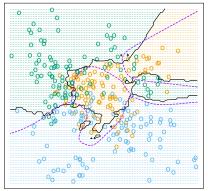
Decision boundaries for C = 3



What *K* should we use?

An example where a large K reduces noise





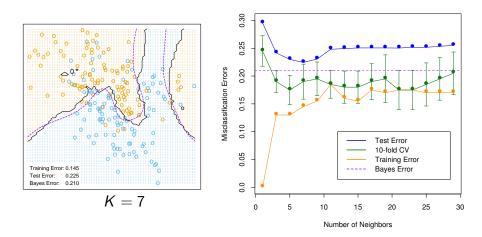
$$K=1$$

$$K = 15$$

(Black curve: KNN decision boundary, broken purple curve: the Bayes decision boundary

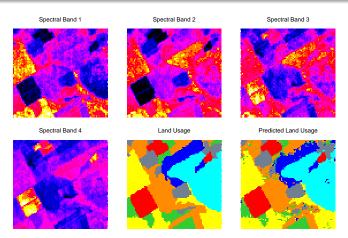
The Elements of Statistical Learning (2nd Ed.) Hastie, Tibshirani, Friedman. §13.3 p463–

Learning curves



The Elements of Statistical Learning (2nd Ed.) Hastie, Tibshirani, Friedman. §13.3 p463–

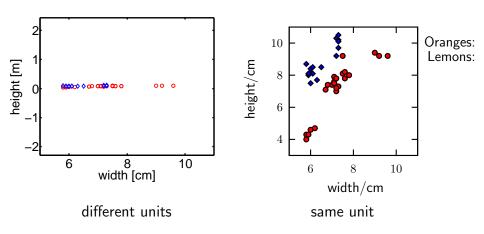
LANDSAT Application



Predict land-usage from satellite data KNN applied to 9 pixel patch in 4 spectral bands, with K=5

The Elements of Statistical Learning (2nd Ed.) Hastie, Tibshirani, Friedman, §13,3 p463–

Tips on pre-processing data

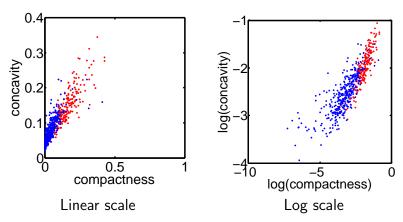


⇒ Standardise features unless understand units

Tips on pre-processing data

Wisconsin Diagnostic Breast Cancer (WDBC) data set

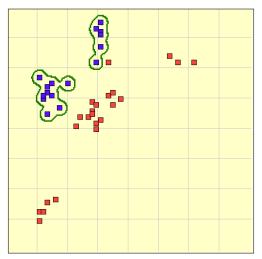
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)



⇒ Consider transformation, e.g. log-transform.

Generalisation and over-fitting

How reasonable is this decision boundary?



Poor generalisation: stories

In a competition:

```
http://blog.kaggle.com/2012/07/06/
the-dangers-of-overfitting-psychopathy-post-mortem/
```

Classic stories:

```
http://neil.fraser.name/writing/tank/
```

```
http://www.j-paine.org/dobbs/neural_net_urban_legends.html
```

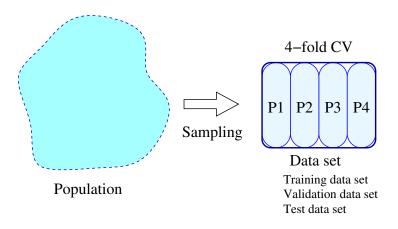
How reliable is the error rate?

- Error rate on training data set:
 can be ~ 0 %
 ⇒ useless to estimate generalisation error
- Error rate on a test data set (exclusive to the training set)
 - How large should the data set be?
 - How should it be collected?

Cross validation is used to estimate generalisation error (swapping test and training data sets)

- k-fold cross validation (k-fold CV)
 (2-fold CV is sometimes called 'holdout method')
- leave-one-out cross validation (LOO CV)

Cross validation



Summary

Classification with similarity based methods

- Represent items as feature vectors
- Compute distances to other items and sort
- Assign a class label to the feature vector
- k-NN: an example-based approach that classifies a test point based on the classes of the closet training samples
- Larger k results in a smoother solution
- Decision boundaries/regions, Voronoi diagram

Generalisation

- Overfitting: tuning a classifier to closely to the training set can reduce accuracy on the test set
- Compare methods on held out data (validation set)
- Estimate final performance on really new data (test set)

Further reading (NE)

- L. Jiang, Z. Cai, D. Wang, S. Jiang, "Survey of Improving K-Nearest-Neighbor for Classification," Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)
- M.R. Abbasifard, B. Ghahremani, H. Naderi, "A Survey on Nearest Neighbor Search Methods," International Journal of Computer Applications (0975 – 8887), Vol.95, No.25, June 2014.
- Hand-Drawn Voronoi Diagrams
- Roberto Tamassia, "Introduction to Voronoi Diagrams,"
 Lecture notes of C.S. 252, Computational Geometry, University of Brown, 1993.
- Steven Fortune, "A sweepline algorithm for Voronoi diagrams," Algorithmica 2, 153 (1987).

Labs

04th, 05th Feb. Lab-3 K-means clustering and PCA

11th, 12th Feb. Lab-4 K-NN classification