Inf2b - Learning

Lecture 2: Similarity and Reocommendation systems

Hiroshi Shimodaira (Credit: Iain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR) School of Informatics University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/inf2b/ https://piazza.com/ed.ac.uk/spring2020/infr08028 Office hours: Wednesdays at 14:00-15:00 in IF-3.04

Jan-Mar 2020

Inf2b - Learning: Lecture 2 Similarity and Reocommendation system

Recommender systems

What makes recommendations good?

Today's schedule

Inf2b - Learning: Lecture 2 Similarity and Reocommendation systems

The Films in 2008

The Critics

Protector C Large 5 Litre All Inse ALL ITEMS SENT IN DISCREET P

£49.99 £29.99

David Denby Todd McCarthy Joe Morgenstern

Inf2b - Learning: Lecture 2 Similarity and Reocommendation syst

Claudia Puig

Peter Travers

Inf2b - Learning: Lecture 2 Similarity and Reocommendation

Kenneth Turan

Film review scores by critics – data

 Data and distances between entities Similarity and recommendations

Normalisation, Pearson Correlation

Transposed problem

	Australia	Body of Lies	Burn After	Hancock	Milk	Rev Road
Denby	3	7	4	9	9	7
McCarthy	7	5	5	3	8	8
M'stern	7	5	5	0	8	4
Puig	5	6	8	5	9	8
Travers	5	8	8	8	10	9
Turan	7	7	8	4	7	8

Representation of data & notation:

$$X = \begin{pmatrix} 3 & 7 & 4 & 9 & 9 & 7 \\ 7 & 5 & 5 & 3 & 8 & 8 \\ 7 & 5 & 5 & 0 & 8 & 4 \\ 5 & 6 & 8 & 5 & 9 & 8 \\ 5 & 8 & 8 & 8 & 10 & 9 \\ 7 & 7 & 8 & 4 & 7 & 8 \end{pmatrix}$$

Score of movie *m* by critic *c*: x_{cm} , $sc_c(m)$ Score vector by critic *c*: $\mathbf{x}_c = (x_{c1}, \dots, x_{cM})^T$ aka feature vector

Inf2b - Learning: Lecture 2 Similarity and Reocommendation systems

Problem definition

User1

User2

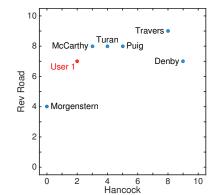
Inf2b - Learning: Lecture 2 Similarity and Reocommendation syste

	Australia	Body of Lies	Burn After	Hancock	Milk	Rev Road
Denby	3	7	4	9	9	7
McCarthy	7	5	5	3	8	8
M'stern	7	5	5	0	8	4
Puig	5	6	8	5	9	8
Travers	5	8	8	8	10	9
Turan	7	7	8	4	7	8

Predict user's score \hat{x}_{um} for unseen film m based on the film review scores by the critics. \Rightarrow Film recommendation (Fill the missing elements based on others)

Inf2b - Learning: Lecture 2 Similarity and Reocommendation system

A two-dimensional review space



Euclidean distance

Distance between 2D vectors: $\mathbf{u} = (u_1, u_2)^T$ and $\mathbf{v} = (v_1, v_2)^T$

$$r_2(u, v) = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2}$$

Distance between *D*-dimensional vectors: $\mathbf{u} = (u_1, \dots, u_D)^T$ and $\mathbf{v} = (v_1, \dots, v_D)^T$

$$r_2(\boldsymbol{u}, \boldsymbol{v}) = \sqrt{\sum_{k=1}^{D} (u_k - v_k)^2}$$

Measures similarities between feature vectors

i.e., similarities between digits, critics, movies, genes, ...

NB: $r_2()$ denotes "2-norm", c.f. p-norm or L^p -norm. [Note 2] cf. other distance measures, e.g. Hamming distance, city-block distance (L^1 norm).

Inf2b - Learning: Lecture 2 Similarity and Reocommendation systems

Distances between critics

$$r_2(x_i, x_j) = \sqrt{\sum_{m=1}^{M} (x_{im} - x_{jm})^2}$$

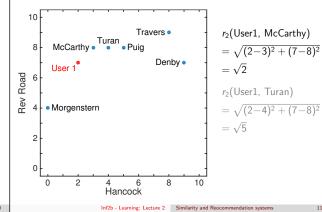
-	Denby	McCarthy	M'stern	Puig	Travers	Turan
Denby		7.7	10.6	6.2	5.2	7.9
McCarthy	7.7		5.0	4.4	7.2	3.9
M'stern	10.6	5.0		7.5	10.7	6.8
Puig	6.2	4.4	7.5		3.9	3.2
Travers	5.2	7.2	10.7	3.9		5.6
Turan	7.9	3.9	6.8	3.2	5.6	

NB: Distances measured in a 6-dimensional space (M = 6)

The closest pair is Puig and Turan

Inf2b - Learning: Lecture 2 Similarity and Reocommendation syste

2D distance between User1 and critics

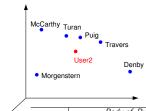


- Simple strategy 1 for film recommendation
 - Find the closest critic, c^* , to User u,
 - use x_{c^*m} for \hat{x}_{um} .

	Australia	Body of Lies	Burn After	Hancock	Milk	Rev Road
Denby	3	7	4	9	9	7
McCarthy	7	5	5	3	8	8
M'stern	7	5	5	0	8	4
Puig	5	6	8	5	9	8
Travers	5	8	8	8	10	9
Turan	7	7	8	4	7	8
User1	-	-	-	2	-	7
Hser2		6	Q			6

Inf2b - Learning: Lecture 2 Similarity and Reocommendation systems

Film recommendation for User2



		Body of	Rurn			Rev	
	Australia	Lies	After	Hancock	Milk	Road	r ₂ (critic, User2
Denby	3	7	4	9	9	7	$\sqrt{27} \approx 5.2$
McCarthy	7	5	5	3	8	8	$\sqrt{21} \approx 4.6$
M'stern	7	5	5	0	8	4	$\sqrt{21} \approx 4.6$
Puig	5	6	8	5	9	8	$\sqrt{5} \approx 2.2$
Travers	5	8	8	8	10	9	$\sqrt{14} \approx 3.7$
Turan	7	7	8	4	7	8	$\sqrt{6} \approx 2.4$
User2	-	6	9	-	-	6	

Inf2b - Learning: Lecture 2 Similarity and Reocommendation syste

Strategy 2

Consider not only the closest critic but also all the critics.

Option 1: The mean or average of critic scores for film m:

$$\hat{x}_{um} = \frac{1}{C} \sum_{c=1}^{C} x_{cm}$$

Option 2: Weighted average over critics:

Weight critic scores according to the *similarity* between the critic and user.

$$\hat{\mathbf{x}}_{um} = \frac{1}{\sum_{c=1}^{C} \sin(\mathbf{x}_{u}, \mathbf{x}_{c})} \sum_{c=1}^{C} \left(\sin(\mathbf{x}_{u}, \mathbf{x}_{c}) \cdot \mathbf{x}_{cm} \right)$$

Inf2b - Learning: Lecture 2 Similarity and Reocommendation system

$$\bar{x} = \frac{w_1 x_1 + w_2 x_2 + \dots + w_n x_n}{w_1 + w_2 + \dots + w_n} = \frac{\sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i}$$

NB: if every x_i has the same value, so does \bar{x} .

Similarity measures

There's a choice. For example:

$$sim(\mathbf{u},\mathbf{v}) = \frac{1}{1 + r_2(\mathbf{u},\mathbf{v})}$$

Can now predict scores for User 2 (see notes)

Good measure?

- ullet Consider distances 0, ∞ , and in between.
- What if some critics rate more highly than others?
- What if some critics have a wider spread than others?
- What if not all critics have seen the same movies? (missing data problem)

Inf2b - Learning: Lecture 2 Similarity and Reocommendation systems

Critic review score statistics

	Australia	Body of Lies	Burn After	Hancock	Milk	Rev Road	mean	std.
Denby	3	7	4	9	9	7	6.5	2.5
McCarthy	7	5	5	3	8	8	6.0	2.0
M'stern	7	5	5	0	8	4	4.8	2.8
Puig	5	6	8	5	9	8	6.8	1.7
Travers	5	8	8	8	10	9	8.0	1.7
Turan	7	7	8	4	7	8	6.8	1.5

Inf2b - Learning: Lecture 2 Similarity and Reocommendation system

Normalisation

Sample mean and **sample standard deviation** of critic *c*'s scores:

$$\bar{x}_c = \frac{1}{M} \sum_{m=1}^{M} x_{cm}$$

$$s_c = \sqrt{\frac{1}{M-1} \sum_{m=1}^{M} (x_{cm} - \bar{x}_c)^2}$$

Different means and spreads make reviewers look different.

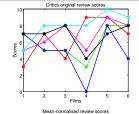
⇒ Create 'standardised score' with mean zero and st. dev. 1. Standard score:

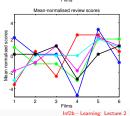
$$z_{cm} = \frac{x_{cm} - \bar{x}_c}{s_c}$$

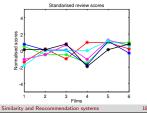
Many learning systems work better with standardised features / outputs

Inf2b - Learning: Lecture 2 Similarity and Reocommendation systematics

Normalisation of critics review scores







Pearson correlation coefficient

Estimate of 'correlation' between critics c and d:

$$\begin{split} r_{cd} &= \frac{1}{M-1} \sum_{m=1}^{M} z_{cm} z_{dm} \\ &= \frac{1}{M-1} \sum_{m=1}^{M} \left(\frac{x_{cm} - \bar{x}_{c}}{s_{c}} \right) \left(\frac{x_{dm} - \bar{x}_{d}}{s_{d}} \right). \end{split}$$

• Based on standard scores

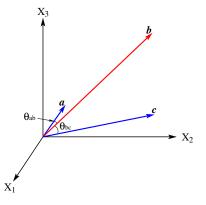
(a shift and stretch of a reviewer's scale makes no difference shift/scale invariant)

- $-1 < r_{cd} < 1$
- How r_{cd} can be used as a similarity measure?

Used in the mix by the winning netflix teams:

https://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pd Inf2b - Learning: Lecture 2 Similarity and Reocommendation systems

Pearson correlation coefficient (cont.)



- Distances between entities
- Similarity and recommendations
- Normalisation, Pearson Correlation
- Transposed problem

And a trick: transpose your data matrix and run your code again. The result is sometimes interesting.

Inf2b - Learning: Lecture 2 Similarity and Reocommendation systems

Transposed problem

Customers Who Bought This Item Also Bought

Page 1 of 16

Inf2b - Learning: Lecture 2 Similarity and Reocommendation systems

Another strategy — based on distance between Movies

		Body of	Burn			Rev
	Australia	Lies	After	Hancock	Milk	Road
Australia		5.8	5.3	10.9	8.9	7.2
Body of Lies	5.8		3.7	6.6	5.9	4.0
Burn After	5.3	3.7		8.9	7.0	4.5
Hancock	10.9	6.6	8.9		10.9	8.4
Milk	8.9	5.9	7.0	10.9		4.8
Rev. Road	7.2	4.0	4.5	8.4	4.8	

Run the same code for distance between critics, simply transpose the data matrix first

Transpose of data in numpy is data.T, in Matlab/Octave it's data'

Inf2b - Learning: Lecture 2 Similarity and Reocommendation syst

C = 480, 189 users/criticsM = 17,770 movies

 $C \times M$ matrix of ratings $\in \{1, 2, 3, 4, 5\}$

The Netflix million dollar prize

(ordinal values)

Full matrix \sim 10 billion cells

 $\sim 1\%$ cells filled (100,480,507 ratings available)

References (NE)

- https://www.netflixprize.com
- https://doi.org/10.1109/MSPEC.2009.4907383
- https://doi.org/10.1109/MC.2009.263

Inf2b - Learning: Lecture 2 Similarity and Reocommendation systems

Further reading (NE)

★本本☆ (13) £8.49

- J. Bobadilla, F. Ortega, A. Hernando, A. Gutiérrez. Recommender systems survey, Knowledge-Based Systems, Volume 46, 2013, pp.109-132. https://doi.org/10.1016/j.knosys.2013.03.012
- Jie Lu, Dianshuang Wu, Mingsong Mao, Wei Wang, Guangquan Zhang, Recommender system application developments: A survey, Decision Support Systems, Volume 74, 2015, pp.12-32. https://doi.org/10.1016/j.dss.2015.03.008
- Shuai Zhang, Lina Yao, Aixin Sun, Yi Tay Deep Learning based Recommender System: A Survey and New Perspectives, ACM Computing Surveys (CSUR), February 2019, Article

https://doi.org/10.1145/3285029

Inf2b - Learning: Lecture 2 Similarity and Reocommendation systems

Quizzes

- Q1: Give examples for $r_{cd} \approx -1$, 0, and 1.
- Q2: Show the Pearson correlation coefficient can be rewritten

$$r_{cd} = \frac{\sum_{m=1}^{M} (x_{cm} - \bar{x}_c)(x_{dm} - \bar{x}_d)}{\sqrt{\sum_{m=1}^{M} (x_{cm} - \bar{x}_c)^2} \sqrt{\sum_{m=1}^{M} (x_{dm} - \bar{x}_d)^2}}$$

- Q3: How the missing data of critics scores should be treated?
- Q4: What if a user provides scores for a few films only?

Summary

- Rating prediction: fill in entries of a $C \times M$ matrix
- A row is a feature vector of a critic
- Guess cells based on weighted average of similar rows
- Similarity based on distance and Pearson correlation coef.
- Could transpose matrix and run same code!
- NB: we considered a very simple case only.
- Try the exercises in Note 2, and do programming in Lab 2.

Drop-in labs for Learning Matlab/Octave square distances Matlab/Octave version c_scores = [Other ways to get square distances: 3749 97; % The next line is like the Python, but not valid Matlab. 7553 88; • Lab1 on 21th at 11:10-13:00, 22nd Jan, at 13:10-15:00 in % Works in recent builds of Octave. 7550 84; d2 = sum((c_scores(:,u2_movies) - u2_scores).^2, 2)'; AT-6.06. 5685 98; 5 8 8 8 10 9; "Similarity and recommender systems" % Old-school Matlab way to make sizes match: 7 7 8 4 7 8]; % CxM d2 = sum((c_scores(:,u2_movies) - ... u2_scores = [6 9 6]; repmat(u2_scores, size(c_scores,1), 1)).^2, 2)'; • Lab worksheet available from the course web page. u2_movies = [2 3 6]; % one-based indices % Sq. distance is common; I have a general routine at: • Questions outside the lab hours: % The next line is complicated. See also next slide: % homepages.inf.ed.ac.uk/imurray2/code/imurray-matlab/square_dist.m d2 = sum(bsxfun(@minus, c_scores(:,u2_movies), u2_scores).^2, 2)'; http://piazza.com/ed.ac.uk/spring2019/infr08009inf2blearnin d2 = square_dist(u2_scores', c_scores(:,u2_movies)'); r2 = sqrt(d2);sim = 1./(1 + r2); % 1xCOr you could write a for loop and do it as you might in Java. pred_scores = (sim * c_scores) / sum(sim) % 1xM = 1xC * CxM Worth doing to check your code. Inf2b - Learning: Lecture 2 Similarity and Reocommendation systems Inf2b - Learning: Lecture 2 Similarity and Reocommendation systems Inf2b - Learning: Lecture 2 Similarity and Reocommendation syst

NumPy programming example

```
from numpy import *
c_scores = array([
    [3, 7, 4, 9, 9, 7],
    [7, 5, 5, 3, 8, 8],
    [7, 5, 5, 0, 8, 4],
    [5, 6, 8, 5, 9, 8],
    [5, 8, 8, 8, 10, 9],
    [7, 7, 8, 4, 7, 8]]) # C,M
u2_scores = array([6, 9, 6])
u2_movies = array([1, 2, 5]) # zero-based indices
r2 = sqrt(sum((c_scores[:,u2_movies] - u2_scores)**2, 1).T) # C,
sim = 1/(1 + r2) # C,
pred_scores = dot(sim, c_scores) / sum(sim)
print(pred_scores)
# The predicted scores has predictions for all movies,
# including ones where we know the true rating from u2.
               Inf2b - Learning: Lecture 2 Similarity and Reocommendation systems
```