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K-means Clustering & PCA

Andreas C. Kapourani
(Credit: Hiroshi Shimodaira)

1 Introduction

In this lab session we will focus on K-means clustering and Principal Component Analysis (PCA).
Clustering is a widely used exploratory tool, whose main task is to identify and group similar objects
together. Clustering can be categorized as an unsupervised learning approach, since we try to interpret
and discover hidden structure in unlabeled data. On the other hand, the problem of classification
is to predict the correct label for some input data. The classifier is learned using a set of training
data containing feature vectors and their labels. This is referred to as supervised learning, since the
label for the training vector acts as supervision for the classifier during the learning phase. PCA is
a technique that is widely used for applications such as dimensionality reduction, visualization and
lossy data compression. In this lab we will focus on the visualization aspect.

2 Example Data

For this lab session we will use the 01d Faithful data set (http://www.stat.cmu.edu/
~larry/all-of-statistics/=data/faithful.dat). The data set comprises 272 observations,
each of which represents a single eruption and contains two variables corresponding to the duration in minutes
of the eruption, and the time until the next eruption, also in minutes. You can download the Old faithful dataset
from the course website:

http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnlLabSchedule.html
You will find a file named faithful.txt, download it and save it in your current folder.

Let’s read the file in a similar way we have done in the previous lab sessions.

% name of the file to be loaded

>> filename = ’faithful.txt’;

% split data at specified delimiter
>> delimiterIn = ’"\t’;

% read numeric data starting from line headerlinesIn+l

>> headerlinesIn = 1; % Note that the first line should be skipped

% Use importdata to load the data
file_data = importdata(filename, delimiterIn, headerlinesIn);

Since the Old Faithful dataset contains also a header line, MATLAB will store our data in a structure
array. (Exercise: Check what a st ruct is in MATLAB.)


http://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat
http://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnLabSchedule.html
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We can extract the information we want from the structure array by using the . (dot) operator and the name of
the field we want to access.

[

% Check what the structure array contains
>> file data
file_data =
data: [272x2 double]
textdata: {’eruptions’ "waiting’}
colheaders: {’eruptions’ "waiting’ }

% store the actual data in matrix A
>> A = file_data.data;

% store the column headers

>> col_headers = file_data.colheaders;

Figure 1 shows a plot of the time to the next eruption versus the duration of the eruptions. It can be seen that
the time to the next eruption varies considerably, although knowledge of the duration of the current eruption
allows it to be predicted more accurately. Also, it is clear that the observations are partitioned in two distinct
groups (clusters).
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Figure 1: Plot of the time to the next eruption in minutes (y-axis) versus the duration of the eruption
in minutes (x-axis) for the Old Faithful dataset. It is clear that the observations are clustered in two
distinct groups.

The code for creating the above plot is the following:

Plot of the 0ld Faithful data

scatter(A(:,1), A(:,2))

% Extract label information from the file headers
xlabel (col_headers{l}); ylabel (col_headers{2})

o\°
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3 K-means clustering

K-means algorithm is one of the most employed clustering algorithms. K-means aims to partition N observa-
tions into K clusters in which each observation belongs to the cluster with the nearest mean. The algorithm
proceeds as follows:

1. Pick K random points as cluster centre positions.
2. Assign each point to the nearest centre.
3. Recompute each cluster mean as the mean of the vectors assigned to that cluster.

4. If centres moved, goto 2.

The algorithm requires a distance measure to be defined in the data space, and the Euclidean distance is often
used. Taking the recommender system as an example, we could use the Euclidean distance between the critics
in order to find K similar groups of critics, e.g. the ones that rate higher drama movies and lower thriller movies,
etc.

3.1 Euclidean distance (again...)

Let’s try and implement the K-means algorithm using the steps shown in the previous section. First of all,
since we need to compute distances between observations and cluster centres, we need again to use the
square_dist function from the previous lab session. If you do not have this file, create a new file, name it
square_dist .mand copy & paste the following MATLAB code:

function sqg_dist = square_dist (U, v)
% Compute 1 x M row vector of square distances for M x N and 1 x N data U
and v, respectively.
sq_dist = sum(bsxfun(@minus, U, v). 2, 2)’;

end

Note that the square_dist function computes the distance between the row vector v and each row of matrix
U. Thus, the number of columns of matrix U and the vector length should be the same.

Reminder: The Euclidean distance r(u, v) between two 2-dimensional vectors u = (uy, up) and v = (vy,Vv2) is
given by the following expression:

€]

r2(u9 V) :\/(Ml - V1)2 + (I/t2 - V2)2 =

3.2 Pick K random points as cluster centre positions

From the plot in Figure 1, we observe that a sensible choice for the total number of clusters is K = 2. We will
pick randomly two points in this 2-dimensional space:

[o)

% Total number of clusters K
>> K = 2;

% pick random points
>> CcO0 = [2 90; 5 501,

% Cell array of different MATLAB color points
>> colors = {'r.’, "g.”, 'b.", "k."};
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>> figure
>> scatter(A(:,1), A(:,2), '"+");

% show each cluster centre (clusterl = red, cluster2 = green)
>> for ¢ = 1:K
hold on;

scatter (CcO(c,1), CcO(c,2), 300, colors{c});
end
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Figure 2: Plot of the Old Faithful dataset together with initial cluster centres. Red colour point is
Cluster 1 and green colour point is Cluster 2.

3.3 Implement K-means algorithm

The core idea of K-means algorithm is to implement steps 2 and 3 shown in the previous section. This is
quite straightforward, since we have already implemented the square distance function (i.e. step 2). The
following MATLAB code implements the K-means algorithm (write the following code in a script file instead
of running each line in the Command Window):

[o)

% Very simple version of K-means algorithm

centres = [2 90; 5 50]; % initial cluster centres

K = size(centres, 1); % extract number of clusters

[N dim] = size(A); % dataset dimensions

maxiter = 100; % Maximum number of iterations

D = zeros (K, N); KxN matrix for storing distances between

o° o

cluster centres and observations
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fprintf (' [0] Iteration: ')
centres % show cluster centres at iteration O
% Iterate 'maxiter’ times
for i = l:maxiter
Compute Squared Euclidean distance (i.e. the squared distance)
between each cluster centre and each observation
for ¢ = 1:K
D(c,:) = square_dist (A, centres(c,:));

o o°

% Assign data to clusters
% Ds are the actual distances and idx are the cluster assignments
[Ds, idx] = min(D); % find min dist. for each observation
% Update cluster centres
for ¢ = 1:K

%$check the number of samples assigned to this cluster

1if ( sum(idx==c) == 0 )

warn (' k-means: cluster %d is empty’, c);

else
centres(c, :) = mean( A(idx==c,:) );
end
end
fprintf (' [$d] Iteration: ', i)
centres % show cluster centres at iteration i

end

When running the above code, the final cluster centres should be the following:

[¢)

% Final cluster centre locations
>> centres

centres =

4.2979 80.2849

2.0943 54.7500

Check Figure 2, and see if these points are actually the 2 cluster centres in the Old Faithful data (Note: Each
centre point is given by the rows of matrix centres).

Exercise

The given K-means MATLAB code prints the cluster centres on each iteration. Scrolling up in the first iterations
of the algorithm, you will realize that the actual cluster centres were learned from the 3rd iteration! Modify the
given algorithm so it terminates when the actual cluster assignments (or equivalently the cluster centres) have
not moved.

Hint 1: Create a vector idx_prev for storing the previous cluster assignments so you can compare if cluster
assignments have changed. Remember to update the previous vector of cluster assignments on each for loop
iteration.

Hint 2: To terminate execution of a for loop you can use the break command.
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3.4 Cluster assignment plots on each iteration

We can also plot the cluster centres and cluster assignments on each iteration of the K-means algorithm, as
shown in Figure 3. It is clear that after two iterations the algorithm had found the actual cluster centres and has
assigned each observation to its actual group.
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Figure 3: K-means cluster assignments on each iteration of the algorithm.

Exercises

1. Create a function myKmeans which will take a dataset A and random initial cluster centres, and will
apply the K-means algorithm as described above. You could also create a plot function which can be
called on each iteration to plot the cluster assignments as shown in Figure 3.

2. MATLAB has a built-in function kmeans, which performs K-means clustering on a given dataset of
observations. Check what parameters this function takes as input and apply it for partitioning the Old
Faithful data into K = 2 clusters. Do the cluster centres agree with your implementation?

3. Run your K-means implementation using a higher number of clusters, e.g. K = 4, are now the results
similar to MATLAB’s implementation?

4. One way to measure the quality of the K-means clustering solution is to compute the sum-squared error:

1 K N
2
E= )0 D Sl —myll
k=1 n=1
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where, my, is the centre of cluster k, and z;, = 1 when point x,, belongs to cluster k and zz, = 0 otherwise.

Modify your k-means implementation so as to compute the sum-squared error on each iteration. Does
this error decrease after each iteration? Increase the number of clusters K, and check the values of error
function. Now you will be able to re-create the figure shown in Lecture 3, Slide 23. Note: The error
function probably will not decrease in the same way, since we are using a different dataset from the
example shown in the lecture slides.

4 Principal Component Analysis

A way for obtaining a better understanding of the data is to visualise it; however, it is not straightforward
to visualise high-dimensional data. This was a problem, for example, in the critics-movie ratings dataset for
recommender systems, where we could only choose pairs of movies (or critics) and plot them.

Principal Component Analysis (PCA) is a technique that is widely used for applications such as dimensionality
reduction, visualization and lossy data compression. In this lab we will focus on the visualization aspect. PCA
can be defined as the orthogonal linear transformation of the data to a lower dimensional linear space, known
as the principal subspace, such that the greatest variance by any projection of the data comes to lie on the first
coordinate (called the first principal component), the second greatest variance on the second coordinate, and
so on. Intuitively, PCA finds a meaningful coordinate basis to express our data (see Lecture 3 for algebraic
details).

Let’s create some synthetic data and show how we can use PCA to transform them to a new basis, and finally
project them to a lower dimension.

% Synethic data in 2 dimensions (x,V)
X = [2.5 2;

~e

~e o N

~ © U3
~

~e

RN DN WEREDNDO
g R Wk o N O

1 1.371;
% Number of observations
N = length(X);

You can plot the data using the scatter function.

The first step in PCA is to subtract off the mean for each dimension (in our case just two dimensions), thus,
each dimension will have zero mean.

[o)

% Calculate the mean for each column
X_mean = mean (X, 1);

% Mean shift the original matrix
X = bsxfun (@minus, X, x_mean);

Next we need to compute the covariance matrix between the two dimensions.

[o)

% Compute covariance matrix of X
>> covar_m = 1/ (N-1) * (X' x X)

covar_m =
0.6236 0.6600
0.6600 0.8500
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Now we compute the eigenvectors and eigenvalues of the covariance matrix using the eig MATLAB function.
These will be our new basis vectors.

find the eigenvectors and eigenvalues
PC are the principal components, i.e. eigenvectors

o° oo o

and V are the corresponding eigenvalues

>> [PC, V] = eig(covar_m)
PC =
-0.7645 0.64406
0.6446 0.7645
VvV =
0.0672 0
0 1.4064

Our new basis are orthogonal, since their dot product is zero:

[o)

% Show that the new basis vectors are orthogonal to each other
>> PC(:,1)" = PC(:,2)

ans =

0

Since the first component should explain most of the variance, and the second most of the remaining variance,
and so on, we should sort the variances in decreasing order, this can be done by ordering the eigenvalues in the
following way:

% extract diagonal of matrix as vector
V = diag(V);

% sort the variances in decreasing order
[tmp, ridx] = sort(V, 1, ’"descend’);

V = V(ridx);

PC = PC(:,ridx);

Now we can plot the principal component basis together with the original data:

% Show the data in original basis
scatter(X(:,1), X(:,2));

xlabel ("x"); ylabel ('y’);
axis([-2 2 -2 21])

hold on;

% Plot the first new basis

hh = refline(PC(2,1)/PC(1,1), 0);
hh.Color = "r’;

hold on;

% Plot the second new basis
hh = refline(PC(1,2)/PC(2,2), 0);

hh.Color = [0.7 0.7 0.17];
axis([-2 2 -2 2])
box on;
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Figure 4: Original data, together with the first principal component (red line) and second principal
component (yellow line).

Now we can transform our original dataset X and project it in the new principal subspace.

% Transform the original data X to the principal subspace
PC_X = X % PC;

% Plot the data in the new basis

plot (PC_X(:,1), PC_X(:,2), "0o")

xlabel ("1st Principal Component’);

ylabel (! 2nd Principal Component’);

box on

xlim([-2.3 2.3]); ylim([-2.3 2.3])

2nd Principal Component

. . . . . . . . .
-2 -1.5 -1 -0.5 0 0.5 1 15 2
1st Principal Component

Figure 5: Plot of the data in the 2-dimensional space obtained by the first two principal components.

We can check that the data after the transformation are uncorrelated, by computing the covariance matrix for
each dimension and see if the non-diagonal elements are zero:

[¢)

% Compute covariance matrix using Matlab’s function cov
>> cov (PC_X)
ans =
1.4064 -0.0000
-0.0000 0.0672
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In the introduction of the PCA, we mentioned that we mainly use it to project data onto a lower dimensional
space so as to be able to visualize them; however, until now we just transformed the data from one basis (our
x-y Cartesian coordinate system) to another basis (the principal subspace).

However, the dimensionality reduction part is straightforward, we just keep the first P principal components
and discard the less important components (Note: We will lose information but not that much if the eigenvalues
are really small). In our case we had just two components, to keep only the first principal component we take
the first column of the PC matrix and transform the X dataset using only that component:

[¢)

% We took the transpose only to show the results as a row vector
>> (X » PC(:,1))"

ans =

0.3175 -1.9656 0.4299 0.3130 2.1568 0.7237 -0.1577
-0.6329 -1.1846
Exercises

o Create a function myPCA which given a matrix A, will perform Principal Component Analysis on it. The
function should return: the sorted eigenvectors PC, the corresponding eigenvalues V and the transformed
data PC_ X.

o Apply PCAtothe 01d Faithful datasetand then apply K-means algorithm on the 1st principal com-
ponent. Do the cluster assignments agree when using K-means on the original dataset? What happens
when you use the 2nd principal component for performing clustering?

e Use the critics-movie ratings dataset from Lab 3. This is a 6 X 6 matrix, hence we cannot plot the critics
preferences in a 2-dimensional plot. Apply PCA on this matrix and plot the critics in the 2-dimensional
space obtained by the first two principal components. The result should be similar to Figure 6, where
each number corresponds to the specific critic, i.e. number 2 corresponds to the second row in the
original dataset, and so on.

o Plot the movies in the 2-dimensional space obtained by the first two principal components. Hint: Just
transpose the matrix so rows correspond to movies and columns to critics.

Figure 6: Plot of the critics in the 2-dimensional space obtained by the first two principal components.

10
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5 Optional extension

To practice more on K-means clustering and the idea of dimensionality reduction using PCA, you can use the
Iris data set (https://archive.ics.uci.edu/ml/datasets/iris). The dataset comprises of 150 observations, each of
which represents the attributes of a plant (sepal length in cm, sepal width in cm, petal length in cm, petal width
in cm). In total there are three class of plants: Iris Setosa, Iris Versicolour and Iris Virginica. You can download
the dataset from the course website, where you will find a file names i ris.txt; note that we have changed
the cluster labels to 1 for Iris Setosa, 2 for Iris Versicolour and 3 for Iris Virginica since Matlab is not efficient
in handling characters.

Using this dataset:

e Use K-means to perform clustering and check that your clusters agree with the actual class assignments.

e This dataset consists of 4 features, hence we cannot easily visualise and plot the data, so we can get a
better understanding of the structure. Use PCA to perform dimensionality reduction and plot the first
two principal components. Do the plant types separate between each other in the dimensionality reduced
plot?

e Now apply K-means only on the 1st principal component of the data. Does your clustering return sensible
results?

Note that these are optional questions and no feedback will be provided, mainly are provided so you get familiar
with the new methods introduced in the lectures and be able to explore new data using machine learning /
statistical models.

6 Appendix A: Simple K-means function

% A very simple Kmeans clustering.

%$ This is a slightly modified version from the original code written
% by Hiroshi Shimodaira <h.shimodaira@ed.ac.uk> February 2015

% Input: A(N,dim) : N samples (row vector of dim-dimension)

% centres (K,dim) : Initial K cluster centers (row vector)

% maxiter : Integer, maximum number of iteration

% verbose : Logical, print results during each iteration
% Output: idx: : Cluster index table of samples (row vector)
% centres (K,dim) : Final cluster centres

function [idx, centres] = simpleKmeans (A, centres, maxiter, verbose)

o

% If ’'verbose’ argument is not given, we set by default to false
if nargin < 4

verbose = false;
end
% If 'maxiter’ argument is not given, we set by default to 100
if nargin < 3

maxiter = 100;
end

11
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end

idx_prev = zeros(l, N);

K
[N dim] = size(A);
D

extract number of clusters

dataset dimensions

KxN matrix for storing distances between
cluster centres and observations

size (centres, 1);

zeros (K, N);

o° o o o°

o\

1xN vector storing cluster assignments

1if verbose

end

for

end

fporintf (' [0] Iteration: ')

[o)

centres % show cluster centres at iteration O

i = l:maxiter
% Compute Squared Euclidean distance (i.e. the squared distance)
% between each cluster centre and each observation
for ¢ = 1:K
D(c,:) = square_dist (A, centres(c,:));
end

% Assign data to clusters
[

Ds are the actual distances and idx are the cluster assignments
S

Ds, idx] = min(D); % find min dist. for each column

% Update cluster centres
for ¢c =1 : K
%$check the number of samples assigned to this cluster

if ( sum(idx==c) == 0 )

warn (' k-means: cluster %d is empty’, c);
else

centres(c, :) = mean( A(idx==c,:) );
end

end
% Check for convergence
if( sum( abs(idx - idx_prev) ) == 0 )
break;
end
% update previous assignment vector with current
idx_prev = idx;

if verbose

fporintf (' [$d] Iteration: ', 1i)

centres % show cluster centres at iteration i
end
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