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Queries

Suppose we have an Inverted Index for a set of webpages.
Disclaimer

I Not really the scenario of Lecture 11.
I Indexing for the web is massive-scale:

many distributed networks working in parallel.

We search with a term t .

Index has many hits for t (say 36,000 for this t).
How should we rank them?

A real search Ranking Queries

Inverted Index (probably) stores the frequency of the term t in
each document d (e.g., in previous lecture, our index
contains fd ,t values).

Idea Rank answers to queries in order of frequency of t
in the various webpages.

Problem Some great websites will not even contain the
term t .
For example, there are not many occurrences of
the term “University of Edinburgh" on
http://www.ed.ac.uk

New Idea Use structure of web to rank queries.



Ranking Queries using web structure

Principle:
Link from one webpage to another confers authority
on the target webpage.

This is the concept behind:
I The Hub-Authority model of Kleinberg.
I PageRankTM ranking system of GoogleTM.

In early 90s, while PhD students at Stanford, Sergey Brin
and Larry Page invented PageRankTM (and founded
GoogleTM).

PageRankTM

Webgraph for a particular query:
I vertices V = [N] where [N] = {1, 2, . . . ,N} corresponding

to pages;
I links are the directed edges of the graph, so E ✓ [N]⇥ [N].

Let G = (V ,E). Recall:

Definition
Let u denote some page u 2 [N] in the webgraph.

I In(u) is the set of in-edges to u. The in-degree in(u) is
in(u) = |In(u)|.

I Out(u) is the set of out-edges from u. The out-degree
out(u) is out(u) = |Out(u)|.

PageRankTM

Could use in-degree to measure ranking directly.
But:

I Want pages of high rank to confer more authority on the
pages they link to.

I A page with few links should transfer more of its authority
to its linked pages than one with many links.

Assumptions: (for basic PageRankTM)
I No “dead-end" pages.
I Every page can hop to every other page via links.
I Aperiodic.

Principle of PageRankTM

Let R(v) denote the rank of v for any webpage v 2 [N].

For every webpage u in our collection, the following equality
should hold:

R(u) =
X

v2In(u)

R(v)/out(v)

Rank of u is the “total amount of Rank” given from the incoming
links to u.



PageRankTM in matrix form

(R1,R2, . . . ,RN) = (R1,R2, . . . ,RN)

0

BB@

p11 p12 . . . p1N
p21 p22 . . . p2N
. . . . . . . . . . . .
pN1 pN2 . . . pNN

1

CCA

where
puv =

⇢
1/out(u), if v 2 Out(u);
0, otherwise.

PageRankTM in matrix form

Shorthand version:

RT = RT P, (1)

where P = [puv ]u,v2[N] and R is the vector of ranks for [N].

Equivalent to asking for

R = PT R, (2)

Looks like condition for R to be an eigenvector of PT with
eigenvalue � = 1.

PageRankTM

Questions and Answers
I How do we know that 1 is an eigenvalue of the matrix PT ?

Answer: PT is a stochastic matrix (each column adds to 1),
so has eigenvalue 1.

I If 1 is an eigenvalue of PT , is it guaranteed to be a simple
eigenvalue?

I i.e., any two vectors that satisfy PT R = R are the same up
to a non-zero constant multiple (linearly dependent).

Answer: Under our assumptions, there is just one linearly
independent eigenvector for 1.

Example
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Example webgraph returned by a rare query in ancient times.



Example
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Satisfies all the nice conditions for Basic PageRankTM model
(no dead-end pages, can move from any vertex x to any other
vertex y , aperiodic) .

Example
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(Ru,Rv ,Rw ,Rz) = (Ru,Rv ,Rw ,Rz)
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Example (continued)

(Ru,Rv ,Rw ,Rz) = (Ru,Rv ,Rw ,Rz)
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Can “read-off" Rw = Rz/3, and propagate this into matrix:

(Ru,Rv ,Rw ,Rz) = (Ru,Rv ,Rw ,Rz)

0

BBBB@

0 1
2 0 1

2
1
2 0 0 1

2
0 0 0 0

1
3 + 1

6
1
3 + 1

6
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3 0

1

CCCCA
.

Example (continued)

Now remove Rw (keeping Rw = Rz/3 to side):

(Ru,Rv ,Rz) = (Ru,Rv ,Rz)
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CA .



Example (continued)

(Ru,Rv ,Rz) = (Ru,Rv ,Rz)
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(Ru,Rv � Rz ,Rz) = (Ru,Rv ,Rz)

0

@
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2 �1

2
1
2

1
2

1
2 0

1

A .

Middle equation reads Rv � Rz = 1/2(Rz � Rv ), so Rv = Rz .
Final equation says Rz = 1/2(Ru + Rv ), so Rz = Ru too.
Solution: Ru = Rv = Rz , Rw = Rz/3.

Alternative (Equivalent) Approach)
Expand vector-matrix product:

Ru =
1
2

Rv +
1
2

Rw +
1
3

Rz

Rv =
1
2

Ru +
1
2

Rw +
1
3

Rz

Rw =
1
3

Rz

Rz =
1
2

Ru +
1
2

Rv .

I Subtract the second equation from the first:
Ru � Rv = 1

2Rv � 1
2Ru

I It follows that Rv = Ru.
I Substituting into the fourth equation: Rz = Ru.
I This method is probably preferable for such small

examples.

Example (continued)
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Solutions are Ru = Rv = Rz , Rw = Rz/3, i.e.,

(Ru,Rv ,Rw ,Rz) = c(1, 1, 1/3, 1)

where c is a constant.
Not the same as counting in-degree (for this example).

General PageMarkTM model

I Remove all our assumptions (dead-end pages,
connectivity).

I � cannot be assumed to be 1.

I Need to tinker the model. See Lecture Notes.



Further Reading

Nothing in [GT] or [CLRS].
Papers on the web:

I An Anatomy of a Large-Scale Hypertextual Web Search Engine,
by Sergey Brin and Lawrence Page, 1998. Online at:
http://www-db.stanford.edu/ backrub/google.html

I The PageRank Citation Ranking: Bringing Order to the Web, by
Page, Brin, Motwani and Winograd, 1998. Available online from:
http://dbpubs.stanford.edu:8090/pub/1999-66

I Authoritative Sources in a Hyperlinked Environment, by Jon
Kleinberg. Available Online from Jon Kleinberg’s webpage:
http://www.cs.cornell.edu/home/kleinber/


