Reminder: Recursive DFS

Algorithm dfs(G)

1. Initialise Boolean array visited
by setting all entries to FALSE

2. forallve Vdo

3. if not visited[v] then

4. dfsFromVertex(G, v)

Inf 2B: Graphs Il - Applications of DFS

Kyriakos Kalorkoti
Algorithm dfsFromVertex(G, v)

1. visited[v] < TRUE

2. for all w adjacent to v do

3. if not visited[w] then

4 dfsFromVertex(G, w)

School of Informatics
University of Edinburgh

Runtime: T(n, m) = ©(n+ m), using Adjacency List

representation.

Trees and Forests DFS Forests Example

Definition: A tree is a connected graph without any cycles
(disregarding directions of edges).

Note: In computing we use rooted trees, i.e., a distinguished (o) (1)
vertex is chosen as the root. v

Definition: A forest is a collection of trees. O g
DFS Forests: (+) () (s)

A DFS traversing a graph builds up a forest:

» vertices are all vertices of the graph,
» edges are those traversed during the DFS.



Connected components of an undirected graph

G = (V, E) undirected graph

Definition

» A subset C of V is connectedif for all v, w € C there is a

path from v to w (if G is directed, say strongly connected).

» A connected component of G is a maximal connected
subset C of V.
Maximal means no connected subset C’ of V strictly
contains C.

» G is connected if it only has one connected component,
i.e., if for all vertices v, w there is a path from v to w.

Connected components (continued)

Algorithm connComp(G)

1. Initialise Boolean array visited
by setting all entries to FALSE
2. forallve Vdo
3 if visited[v] = FALSE then
4, print “New Component”
5 ccFromVertex(G, v)

Connected components (continued)

» Each vertex of an undirected graph is contained in exactly
one connected component.

» For each vertex v of an undirected graph, the connected
component that contains v is precisely the set of all
vertices that are reachable from v.

For an undirected graph G, dfsFromVertex(G, v) visits exactly
the vertices in the connected component of v.

Connected components (continued)

Algorithm ccFromVertex(G, v)
visited|v] <— TRUE

2. printv

3. for all w adjacentto v do

4. if visited[w] = FALSE then
5 ccFromVertex(G, w)

—_



Topological Sorting Topological order

Example:
10 tasks to be carried out. Some of them depend on others.

» Task 0 must be completed before Task 1 can be started.

Definition
» Task 1 and Task 2 must be done before Task 3 can start. Let G = (V, E) be a directed graph. A topological order of G is
» Task 4 must be done before Task 0 or Task 2 can start. a total order < of the vertex set V such that for all edges

» Task 5 must be done before Task 0 or Task 4 can start. (v,w) € Ewe have v < w.

» Task 6 must be done before Task 4, 5 or 7 can start.

» Task 7 must be done before Task 0 or Task 9 can start.
» Task 8 must be done before Task 7 or Task 9 can start.
» Task 9 must be done before Task 2 or Task 3 can start.

Example (continued) Topological order (continued)

A digraph that has a cycle does not have a topological order.

Definition
A DAG (directed acyclic graph) is a digraph without cycles.

Theorem
A digraph has a topological order if and only if it is a DAG.
Does this graph have a topological order?

Yes, the topological sort is:

8<6<7<9<5<4<2<0<1<8.



Classification of vertices during DFS

G = (V,E) graph, v € V. Consider dfs(G).
» v finished if dfsFromVertex(G, v) has been completed.

Vertices can be in the following states:

» not yet visited (call a vertex in this state white),
» visited, but not yet finished (grey).
» finished (black).

Topological sorting

G = (V, E) digraph. Define order on V as follows:

v < w <= w becomes black before v.

Theorem
If G is DAG then < is a topological order.

Proof.
Suppose (v, w) € E. Consider dfsFromVertex(G, v).
» If wis already black, then v < w.

» If wis white, then by Lemma part 1, w will be black
before v. Thus v < w.

» If wis grey, then by Lemma part 2, v is reachable from w.

So there is a path p from w to v. Path p and edge (v, w)
together form a cycle. Contradiction! (G is acyclic .. .)

O

Classification of vertices during DFS (continued)

Lemma

Let G be a graph and v a vertex of G. Consider the moment
during the execution of dfs(G) when dfsFromVertex(G, v) is
started. Then for all vertices w we have:

1. If w is white and reachable from v, then w will be black
before v.

2. If wis grey, then v is reachable from w.

Topological sorting (continued)

Algorithm topSort(G)

—

. Initialise array state
by setting all entries to white.
2. Initialise linked list L
3. forallve Vdo
4. if state[v] = white then
5. sortFromVertex(G, v)
6. print L



Topological sorting (continued)

Algorithm sortFromVertex(G, v)

1. state[v] «+ grey

2. for all w adjacent to v do

3 if state[w] = white then

4. sortFromVertex(G, w)
5. else if state[w] = grey then
6. print “G has a cycle”
7 halt

8. state|v] < black

9. L.insertFirst(v)



