Inf 2B: Graphs, BFS, DFS

Kyriakos Kalorkoti

School of Informatics University of Edinburgh

Directed and Undirected Graphs

- ► A *graph* is a mathematical structure consisting of a set of *vertices* and a set of *edges* connecting the vertices.
- ▶ Formally: G = (V, E), where V is a set and $E \subseteq V \times V$.
- ▶ For edge e = (u, v) we say that e is directed from u to v.
- G = (V, E) undirected if for all $v, w \in V$:

$$(v, w) \in E \iff (w, v) \in E.$$

Otherwise directed.

1/26

Directed \sim arrows (one-way)

Undirected ∼ *lines* (two-way)

▶ We assume *V* is finite, hence *E* is also finite.

2/26

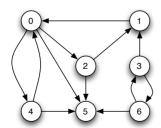
A directed graph

$$G \ = \ (V,E),$$

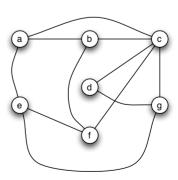
$$V = \{0, 1, 2, 3, 4, 5, 6\},\$$

$$E \ = \ \big\{(0,2),(0,4),(0,5),(1,0),(2,1),(2,5),$$

$$(3,1),(3,6),(4,0),(4,5),(6,3),(6,5)\big\}.$$



An undirected graph



26

Examples

► Road Maps.

Edges represent streets and vertices represent crossings (junctions).

Computer Networks.

Vertices represent computers and edges represent network connections (cables) between them.

► The World Wide Web.

Vertices represent webpages, and edges represent hyperlinks.

...

Adjacency matrices

Let G = (V, E) be a graph with n vertices. Vertices of G are numbered $0, \ldots, n-1$.

The adjacency matrix of G is the $n \times n$ matrix

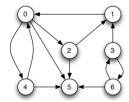
$$A=(a_{ij})_{0\leq i,j\leq n-1}$$

with

$$a_{ij} = \begin{cases} 1, & \text{if there is an edge from vertex } i \text{ to vertex } j; \\ 0, & \text{otherwise.} \end{cases}$$

5/26 6/26

Adjacency matrix (Example)

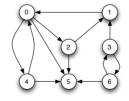


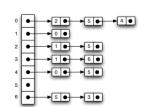


Adjacency lists

Array with one entry for each vertex v, which is a list of all vertices adjacent to v.

Example





7/26

Quick Question

Given: graph G=(V,E), with n=|V|, m=|E|. For $v\in V$, we write in(v) for in-degree, out(v) for out-degree.

Which data structure has faster (asymptotic) worst-case running-time, for *checking if w is adjacent to v*, for a given pair of vertices?

- 1. Adjacency list is faster.
- 2. Adjacency matrix is faster.
- 3. Both have the same asymptotic worst-case running-time.
- 4. It depends.

Answer: 2. For an Adjacency Matrix we can check in $\Theta(1)$ time. An adjacency list structure takes $\Theta(1+out(v))$ time.

Quick Question

Given: graph G=(V,E), with n=|V|, m=|E|. For $v\in V$, we write in(v) for in-degree, out(v) for out-degree.

Which data structure has faster (asymptotic) worst-case running-time, for *visiting all vertices w adjacent to v*, for a given vertex v?

- 1. Adjacency list is faster.
- 2. Adjacency matrix is faster.
- 3. Both have the same asymptotic worst-case running-time.
- 4. It depends.

Answer: 3. Adjacency matrix requires $\Theta(n)$ time always. Adjacency list requires $\Theta(1+out(v))$ time. In worst-case $out(v)=\Theta(n)$.

Adjacency Matrices vs Adjacency Lists

	adjacency matrix	adjacency list
Space	Θ(<i>n</i> ²)	$\Theta(n+m)$
Time to check if w adjacent to v	Θ(1)	$\Theta(1 + out(v))$
Time to visit all <i>w</i> adjacent to <i>v</i> .	⊖(n)	$\Theta(1 + out(v))$
Time to visit all edges	Θ(<i>n</i> ²)	$\Theta(n+m)$

Sparse and dense graphs

G = (V, E) graph with n vertices and m edges

Observation:

 $m \leq n^2$

- ▶ G dense if m close to n²
- ▶ G sparse if m much smaller than n^2

11/26 12/26

Graph traversals

A *traversal* is a strategy for visiting all vertices of a graph while respecting edges.

BFS = breadth-first search

DFS = depth-first search

General strategy:

- 1. Let v be an arbitrary vertex
- 2. Visit all vertices reachable from v
- 3. If there are vertices that have not been visited, let *v* be such a vertex and go back to (2)

Graph Searching (general Strategy)

Algorithm searchFromVertex(G, v)

- 1. mark v
- 2. put v onto schedule S
- 3. while schedule S is not empty do
- 4. remove a vertex *v* from *S*
- 5. **for all** w adjacent to v **do**
- 6. **if** w is not marked **then**
- 7. mark w
- 8. put w onto schedule S

Algorithm search(G)

1. ensure that each vertex of G is not marked

14/26

- 2. initialise schedule S
- 3. for all $v \in V$ do
- 4. **if** *v* is not marked **then**
- 5. $\operatorname{searchFromVertex}(G, v)$

Three colour view of vertices

Previous algorithm has vertices in one of two states: unmarked and marked. Progression is

 $\textit{unmarked} \longrightarrow \textit{marked}$

- Can also think of them as being in one of three states (represented by colours):
 - White: not yet seen (not yet investigated).
 - Grey: put on schedule (under investigation).
 - ► Black: taken off schedule (completed).

Progression is

white \longrightarrow grey \longrightarrow black

We will use the three colour scheme when studying an algorithm for topological sorting of graphs.

BFS

13/26

Visit all vertices reachable from $\boldsymbol{\nu}$ in the following order:

- ▶ V
- ▶ all neighbours of v
- all neighbours of neighbours of v that have not been visited yet
- all neighbours of neighbours of neighbours of v that have not been visited yet
- etc.

15/26 16/26

BFS (using a Queue)

Algorithm bfs(G)

- 1. Initialise Boolean array visited, setting all entries to FALSE.
- 2. Initialise Queue Q
- 3. for all $v \in V$ do
- 4. **if** visited[v] = FALSE **then**
- 5. bfsFromVertex(G, v)

BFS (using a Queue)

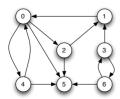
Algorithm bfsFromVertex(G, v)

```
1. visited[v] = TRUE
2. Q.enqueue(v)
3. while not Q.isEmpty() do
4. v \leftarrow Q.dequeue()
5. for all \ w \ adjacent to \ v \ do
6. if \ visited[w] = FALSE \ then
7. visited[w] = TRUE
8. Q.enqueue(w)
```

17/26 18/26

Algorithm bfsFromVertex(G, v)

```
 \begin{array}{lll} 1. & \textit{visited}[v] = \mathsf{TRUE} \\ 2. & \textit{Q.}\mathsf{enqueue}(v) \\ 3. & \textit{while not } \textit{Q.}\mathsf{isEmpty}() \, \textit{do} \\ 4. & \textit{v} \leftarrow \textit{Q.}\mathsf{dequeue}() \\ 5. & \textit{for all } \textit{w} \, \textit{adjacent to } \textit{v} \, \textit{do} \\ 6. & \textit{if } \textit{visited}[w] = \mathsf{FALSE} \, \textit{then} \\ 7. & \textit{visited}[w] = \mathsf{TRUE} \\ 8. & \textit{Q.}\mathsf{enqueue}(w) \\ \end{array}
```



Quick Question

Given a graph G = (V, E) with n = |V|, m = |E|, what is the worst-case running time of BFS, in terms of m, n?

- 1. $\Theta(m+n)$
- 2. $\Theta(n^2)$
- 3. ⊖(*mn*)
- 4. Depends on the number of components.

Answer: 1. To see this need to be careful about bounding running time for the loop at lines 5–8.

Must use the Adjacency List structure.

Answer: 2. if we use adjacency matrix representation.

19/26 20/26

DFS

Visit all vertices reachable from v in the following order:

- ► \(\(\text{\text{\$\sum_{i}}} \)
- ▶ some neighbour w of v that has not been visited yet
- ▶ some neighbour *x* of *w* that has not been visited yet
- etc., until the current vertex has no neighbour that has not been visited yet
- Backtrack to the first vertex that has a yet unvisited neighbour v'.
- ► Continue with v', a neighbour, a neighbour of the neighbour, etc., backtrack, etc.

DFS (using a stack)

Algorithm dfs(G)

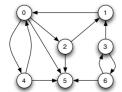
- 1. Initialise Boolean array visited, setting all to FALSE
- 2. Initialise Stack S
- 3. for all $v \in V$ do
- 4. **if** visited[v] = FALSE **then**
- 5. dfsFromVertex(G, v)

21/26 22/26

DFS (using a stack)

Algorithm dfsFromVertex(G, v)

1. S.push(v)2. **while not** S.isEmpty() **do** 3. $v \leftarrow S.pop()$ 4. **if** visited[v] = FALSE **then** 5. visited[v] = TRUE6. **for all** w adjacent to v **do** 7. S.push(w)



Recursive DFS

Algorithm dfs(G)

- Initialise Boolean array visited by setting all entries to FALSE
- 2. for all $v \in V$ do
- 3. **if** visited[v] = FALSE **then** 4. dfsFromVertex(G, v)

Algorithm dfsFromVertex(G, v)

- 1. $visited[v] \leftarrow TRUE$
- 2. for all w adjacent to v do
- 3. **if** visited[w] = FALSE **then** 4. dfsFromVertex(G, w)

23/26 24/26

Analysis of DFS

G = (V, E) graph with n vertices and m edges

Without recursive calls:

- ▶ dfs(G): time $\Theta(n)$
- dfsFromVertex(G, v): time Θ (1 + out-degree(v))

Overall time:

$$\begin{split} T(n,m) &= \Theta(n) + \sum_{v \in V} \Theta(1 + \text{out-degree}(v)) \\ &= \Theta\Big(n + \sum_{v \in V} (1 + \text{out-degree}(v))\Big) \\ &= \Theta\Big(n + n + \sum_{v \in V} \text{out-degree}(v)\Big) \\ &= \Theta\Big(n + \sum_{v \in V} \text{out-degree}(v)\Big) \\ &= \Theta(n + m) \end{split}$$

25/26