
Inf 2B: Sorting, MergeSort and
Divide-and-Conquer
Lecture 7 of ADS thread

Kyriakos Kalorkoti

School of Informatics
University of Edinburgh

The Sorting Problem

Input: Array A of items with comparable keys.
Task: Sort the items in A by increasing keys.

The number of items to be sorted is usually denoted by n.

What is important?

Worst-case running-time:

What are the bounds on TSort(n) for our Sorting Algorithm Sort.

In-place or not?:

A sorting algorithm is in-place if it can be (simply) implemented
on the input array, with only O(1) extra space (extra variables).

Stable or not?:

A sorting algorithm is stable if for every pair of indices with
A[i].key = A[j].key and i < j , the entry A[i] comes before A[j] in
the output array.

Insertion Sort

Algorithm insertionSort(A)

1. for j 1 to A.length � 1 do

2. a A[j]
3. i j � 1
4. while i � 0 and A[i].key > a.key do

5. A[i + 1] A[i]
6. i i � 1
7. A[i + 1] a

I Asymptotic worst-case running time: ⇥(n2).
I The worst-case (which gives ⌦(n2)) is hn, n � 1, . . . , 1i.
I Both stable and in-place.

2nd sorting algorithm - Merge Sort

9 8 512 6 4 13

12 6 4 13 8 5

64 13

4 5 6 8 9 12 13

sort
recursively

Divide

&

Conquer

split in
the middle

merge solutions
together

9

129 85

Merge Sort - recursive structure

Algorithm mergeSort(A, i , j)

1. if i < j then

2. mid b i+j
2 c

3. mergeSort(A, i ,mid)
4. mergeSort(A,mid + 1, j)
5. merge(A, i ,mid , j)

Running Time:

T (n) =

(
⇥(1), for n  1;
T (dn/2e) + T (bn/2c) + Tmerge(n) +⇥(1), for n � 2.

How do we perform the merging?

Merging the two subarrays

8 11 12 9 214 4

8 11 12 2194 4 8 B

B

8 11 12 4 9 21 B4 8 9

11 128 2194

l=mid+1

l

lk

k

k l

mk=i

A

A

A

A

New array B for output.
⇥(j � i + 1) time (linear time) always (best and worst cases).

Merge pseudocode

Algorithm merge(A, i ,mid , j)

1. new array B of length j � i + 1
2. k i
3. ` mid + 1
4. m 0
5. while k  mid and `  j do

6. if A[k].key <= A[`].key then

7. B[m] A[k]
8. k k + 1
9. else

10. B[m] A[`]
11. ` `+ 1
12. m m + 1

13. while k  mid do

14. B[m] A[k]

15. k k + 1

16. m m + 1

17. while `  j do

18. B[m] A[`]

19. ` `+ 1

20. m m + 1

21. for m = 0 to j � i do

22. A[m + i] B[m]

Question on mergeSort

What is the status of mergeSort in regard to stability and
in-place sorting?

1. Both stable and in-place.
2. Stable but not in-place.
3. Not stable, but is in-place.
4. Neither stable nor in-place.

Answer: not in-place but it is stable.
If line 6 reads < instead of <=, we have sorting but NOT
Stability.

Analysis of Mergesort

I
merge

Tmerge(n) = ⇥(n)

I
mergeSort

T (n) =

(
⇥(1), for n  1;
T (dn

2e) + T (bn
2c) + Tmerge(n) +⇥(1), for n � 2.

=

(
⇥(1), for n  1;
T (dn

2e) + T (bn
2c) +⇥(n), for n � 2.

Solution to recurrence:

T (n) = ⇥(n lg n).

Solving the mergeSort recurrence

Write with constants c, d :

T (n) =

(
c, for n  1;
T (dn

2e) + T (bn
2c) + dn, for n � 2.

Suppose n = 2k for some k . Then no floors/ceilings.

T (n) =

(
c, for n = 1;
2T (n

2) + dn, for n � 2.

Solving the mergeSort recurrence
Put ` = lg n (hence 2` = n).

T (n) = 2T (n/2) + dn
= 2

�
2T (n/22) + d(n/2)

�
+ dn

= 22T (n/22) + 2dn
= 22�2T (n/23) + d(n/22)

�
+ 2dn

= 23T (n/23) + 3dn
...

= 2kT (n/2k) + kdn
= 2`T (n/2`) + `dn
= nT (1) + `dn
= cn + dn lg(n)
= ⇥(n lg(n)).

Can extend to n not a power of 2 (see notes).

Merge Sort vs. Insertion Sort

I Merge Sort is much more efficient

But:
I If the array is “almost” sorted, Insertion Sort only needs

“almost” linear time, while Merge Sort needs time
⇥(n lg(n)) even in the best case.

I For very small arrays, Insertion Sort is better because
Merge Sort has overhead from the recursive calls.

I Insertion Sort sorts in place, mergeSort does not (needs
⌦(n) additional memory cells).

Divide-and-Conquer Algorithms

I Divide the input instance into several instances
P1,P2, . . .Pa of the same problem of smaller size -
“setting-up".

I Recursively solve the problem on these smaller instances.
I Solve small enough instances directly.

I Combine the solutions for the smaller instances
P1,P2, . . .Pa to a solution for the original instance. Do
some “extra work" for this.

Analysing Divide-and-Conquer Algorithms

Analysis of divide-and-conquer algorithms yields recurrences
like this:

T (n) =

(
⇥(1), if n < n0;

T (n1) + . . .+ T (na) + f (n), if n � n0.

f (n) is the time for “setting-up" and “extra work."

Usually recurrences can be simplified:

T (n) =

(
⇥(1), if n < n0;

aT (n/b) +⇥(nk), if n � n0,

where n0, a, k 2 N, b 2 R with n0 > 0, a > 0 and b > 1 are
constants.
(Disregarding floors and ceilings.)

The Master Theorem
Theorem: Let n0 2 N, k 2 N0 and a, b 2 R with a > 0 and
b > 1, and let T : N! R satisfy the following recurrence:

T (n) =

(
⇥(1), if n < n0;

aT (n/b) +⇥(nk), if n � n0.

Let e = logb(a); we call e the critical exponent. Then

T (n) =

8
<

:

⇥(ne), if k < e (I);
⇥(ne lg(n)), if k = e (II);
⇥(nk), if k > e (III).

I Theorem still true if we replace aT (n/b) by

a1T (bn/bc) + a2T (dn/be)

for a1, a2 � 0 with a1 + a2 = a.

Master Theorem in use
Example 1:
We can “read off” the recurrence for mergeSort:

TmergeSort(n) =

(
⇥(1), n  1;
TmergeSort(dn

2e) + TmergeSort(bn
2c) +⇥(n), n � 2.

In Master Theorem terms, we have

n0 = 2, k = 1, a = 2, b = 2.

Thus
e = logb(a) = log2(2) = 1.

Hence
TmergeSort(n) = ⇥(n lg(n))

by case (II).

. . . Master Theorem

Example 2: Let T be a function satisfying

T (n) =

(
⇥(1), if n  1;
7T (n/2) +⇥(n4), if n � 2.

e = logb(a) = log2(7) < 3

So T (n) = ⇥(n4) by case (III) .

Further Reading

I If you have [GT], the “Sorting Sets and Selection" chapter
has a section on mergeSort(.)

I If you have [CLRS], there is an entire chapter on
recurrences.

