Inf 2B: Sorting, MergeSort and
Divide-and-Conquer
Lecture 7 of ADS thread

Kyriakos Kalorkoti

School of Informatics
University of Edinburgh

What is important?

Worst-case running-time:
What are the bounds on Tgq(n) for our Sorting Algorithm Sort.

In-place or not?:
A sorting algorithm is in-place if it can be (simply) implemented
on the input array, with only O(1) extra space (extra variables).

Stable or not?:

A sorting algorithm is stable if for every pair of indices with
Ali].key = A[j].key and i < j, the entry A[i] comes before A[j] in
the output array.

The Sorting Problem

Input: Array A of items with comparable keys.
Task: Sortthe items in A by increasing keys.

The number of items to be sorted is usually denoted by n.

Insertion Sort

Algorithm insertionSort(A)

1. forj«+ 1to A.length—1 do

2 a+ Alj]

3 [—j—1

4. while i > 0 and A[i].key > a.key do
5 Ali +1] «+ A[i]

6 f—i—1

7 Ai+1] < a

» Asymptotic worst-case running time: ©(n?).
» The worst-case (which gives Q(n?))is (n,n—1,...,1).
» Both stable and in-place.

2nd sorting algorithm - Merge Sort

(12]6 [4]o]3] 8]5]

thseprlri:iiir:jle Divide
[2[6l4]o] [13]8]5]

resggively &
[+[olofr] [s]s]s]

merge solutions
together Conquer

4] 5|6l 8] 9]] 13

Merging the two subarrays

r Lo [u]e] [+]o 1] | Ll
k=i I=mid+1 m
a [s]n]e] [+]o[2] | BT
k 1
A ‘S‘II‘IZ‘ ‘4‘9‘21‘ ‘ ‘4‘8‘9‘ ‘
X 1
A ‘S‘II‘IZ‘ ‘4 9 2]‘ ‘

1

New array B for output.

©(— i+ 1) time (linear time) always (best and worst cases).

Merge Sort - recursive structure

Algorithm mergeSort(A, i,)

1.
2.
3.
4
5

ifi<jthen
mid + | 3]
mergeSort(A, i, mid)
mergeSort(A, mid + 1,j)
merge(A, i, mid, j)

Running Time:

T(n):{e(1)’ forn <1,

T(f”/ﬂ) + T(Ln/2j) + Tmerge(n) + @(1), forn> 2.

How do we perform the merging?

Merge pseudocode

Algorithm merge(A, i, mid, j)

© N ok wDhd =

k._.
M o0

new array B of length j — i + 1 13. while k < mid do

K« i 14. B[m] « A[K]
£ < mid +1 15. k+— k+1
m« 0 16. mem+1

while k < mid and ¢ < j do

) 17. while ¢ < jdo
if Ak].key <= A[{].key then

18. B[m] « Al

B[m] + A[k]
k— Kk+1 19. b 0+1

else 20. m«+— m+1
B[m] « Al(] 21. form=0toj—ido
b+ 0+1

22. Alm+ i] + B[m]
m<«~ m+1

Question on mergeSort

What is the status of mergeSort in regard to stability and
in-place sorting?

1. Both stable and in-place.
2. Stable but notin-place.

3. Not stable, but is in-place.
4. Neither stable nor in-place.

Answer: not in-place but it is stable.

If line 6 reads < instead of <=, we have sorting but NOT
Stability.

Solving the mergeSort recurrence

Write with constants c, d:

o e forn <1;
= g+ T8 o fornz2.

Suppose n = 2k for some k. Then no floors/ceilings.

c, forn=1;
T(n) = n
2T(5)+dn, forn>2.

Analysis of Mergesort

» merge

Tmerge(17) = ©(n)

» mergeSort

T(n) = e(1), forn<1;
- T([g])Jr T(LgJ)JF Tmerge(n)+e(1), forn> 2.

e, forn<1;
O\ T2+ T(12]) +6(n), forn>2.

Solution to recurrence:

T(n)=0©(nlg n).

Solving the mergeSort recurrence
Put ¢ = Ig n (hence 2¢ = n).

T(n) = 2T(n/2)+dn
= 2(2T(n/2%) +d(n/2)) + dn
= 22T(n/2%) +2dn
= 22(2T(n/2%) + d(n/2?)) + 2dn
= 23T(n/2%) +3dn

= 2KT(n/2") + kdn
2¢T(n/2% + tdn
nT(1) + ¢dn
cn+ dnlg(n)

= ©(nlg(n)).

Can extend to n not a power of 2 (see notes).

Merge Sort vs. Insertion Sort

» Merge Sort is much more efficient

But:

» If the array is “almost” sorted, Insertion Sort only needs
“almost” linear time, while Merge Sort needs time
©(nlg(n)) even in the best case.

» For very small arrays, Insertion Sort is better because
Merge Sort has overhead from the recursive calls.

» Insertion Sort sorts in place, mergeSort does not (needs
Q(n) additional memory cells).

Analysing Divide-and-Conquer Algorithms

Analysis of divide-and-conquer algorithms yields recurrences
like this:

T(n) — o(1), if n < ny;
(m) = T(m)+...+ T(na) +f(n), ifn>ng.

f(n) is the time for “setting-up" and “extra work."
Usually recurrences can be simplified:

T(n — o(1), if n < ng;
() = aT(n/b) +©(n*), ifn> ng,

where ng,a,k e N, be Rwithng >0,a>0and b > 1 are
constants.
(Disregarding floors and ceilings.)

Divide-and-Conquer Algorithms

» Divide the input instance into several instances
P1, P>, ... P of the same problem of smaller size -
“setting-up".

» Recursively solve the problem on these smaller instances.

» Solve small enough instances directly.

» Combine the solutions for the smaller instances
P, Ps, ... P to a solution for the original instance. Do
some “extra work" for this.

The Master Theorem

Theorem: Letny € N, k € Ny and a,b € R with a > 0 and
b>1,andlet T : N — R satisfy the following recurrence:

T(n) = {@(1), if n < ng;

aT(n/b) +0©(n*), ifn> ng.

Let e = log,(a); we call e the critical exponent. Then

o(nt), ifk<e ;
T(n)=< ©(nclg(n)), ifk=e (n);
o(nk), ifk>e (.

Theorem still true if we replace aT(n/b) by
a1 T([n/b]) + axT([n/b])

for a;,a> > 0 with a1 + a» = a.

Master Theorem in use

Example 1:
We can “read off” the recurrence for mergeSort:

7-mergeSort (n) = {

In Master Theorem terms, we have

n=2 k=1, a=2, b=2

Thus

e =log,(a) =log,(2) = 1.
Hence

TmergeSort(n) = @(n Ig(n))
by case (ll).

Further Reading

» If you have [GT], the “Sorting Sets and Selection" chapter
has a section on mergeSort(.)

» If you have [CLRS], there is an entire chapter on
recurrences.

o(1), n<it;
TmergeSort([gD + TmergeSort('_gJ) + @(n)a n>2.

.Master Theorem

Example 2: Let T be a function satisfying

o — Je), if n<1;
(m) = 7T(n/2) +©(n%), ifn>2.

e =log,(a) =log,(7) <3

So T(n) = ©(n*) by case (lll) .

