
1 / 22

Inf 2B: Hash Tables
Lecture 4 of ADS thread

Kyriakos Kalorkoti

School of Informatics
University of Edinburgh

2 / 22

Dictionaries

A Dictionary stores key–element pairs, called items. Several
elements might have the same key. Provides three methods:

I findElement(k): If the dictionary contains an item with
key k , then return its element; otherwise return the special
element NO SUCH KEY.

I insertItem(k , e): Insert an item with key k and element e.
I removeItem(k): If the dictionary contains an item with key

k , then delete it and return its element; otherwise return
NO SUCH KEY.

3 / 22

List Dictionaries

I Items are stored in a singly linked list (in any order).
I Algorithms for all methods are straightforward.
I Running Time:

insertItem : ⇥(1)
findElement : ⇥(n)
removeItem : ⇥(n)

(n always denotes the number of items stored in the
dictionary)

4 / 22

Direct Addressing

Suppose:
I Keys are integers in the range 0, . . . ,N � 1.
I All elements have distinct keys.

A data structure realising Dictionary (sometimes called a direct
address table):

I Elements are stored in array B of length N.
I The element with key k is stored in B[k].
I Running Time: ⇥(1) for all methods.

5 / 22

Bucket Arrays

Suppose:
I Keys are integers in the range 0, . . . ,N � 1.
I Several elements might have the same key, so collisions

may occur.

What do we do about these collisions?

Store them all together in a List pointed to by B[k] (sometimes
called chaining).

6 / 22

Bucket Arrays

Bucket array implementation of Dictionary :
I Bucket array B of length N holding Lists
I Element with key k is stored in the List B[k].
I Methods of Dictionary are implemented using insertFirst(),

first(), and remove(p) of List

Running Time: ⇥(1) for all methods (with linked list
implementation of List - p is always the first pointer, so we can
easily keep track of it).

I Works because findElement(k) and removeItem(k) only
need 1 item with key k .

A good solution if N is not much larger than the number of keys
(a small constant multiple).

7 / 22

Hash Tables

Dictionary implementation for arbitrary keys (not necessarily all
distinct).

Two components:
I Hash function h mapping keys to integers in the range

0, ...,N � 1 (for some suitable N 2 N).
I Bucket array B of length N to hold the items.

Item (key–element pair) with key k is stored in the bucket
B[h(k)].

8 / 22

Issues for Hash Tables

I Need to consider collision handling. (Here we might have
h(k1) = h(k2) even for k1 6= k2, so List implementation is
more complicated.

I Analyse the running time.
I Find good hash functions.
I Choose appropriate N.

9 / 22

Implementation

Problem: Elements with distinct keys might go into the same
bucket.
Solution: Let buckets be list dictionaries storing the items
(key-element pairs).

The methods:

Algorithm findElement(k)
1. Compute h(k)
2. return B[h(k)].findElement(k)

10 / 22

Implementation

Algorithm InsertItem(k , e)

1. Compute h(k)
2. B[h(k)].insertItem(k , e)

Algorithm removeItem(k)

1. Compute h(k)
2. return B[h(k)].removeItem(k)

11 / 22

Implementation

Running time?
Depends on the list methods

I B[h(k)].findElement(k),
I B[h(k)].insertItem(k , e), and
I B[h(k)].removeItem(k).

Assume we Insert at front (or end):
I ⇥(1) time for B[h(k)].insertItem(k , e).

12 / 22

Analysis

I Let Th be the running time required for computing h
(more precisely: Th(nkey), where nkey is the size of the key)

I Let m be the maximum size of a bucket. Then the running
time of the hash table methods is:

insertItem : Th +⇥(1)
findElement : Th +⇥(m)
removeItem : Th +⇥(m)

Worst case:
m = n.

I m depends on hash function and on input distribution of keys.

13 / 22

Hash functions

Hash function h maps keys to {0, . . . ,N � 1}.

Criteria for a good hash function:

(H1) h evenly distributes the keys over the range of buckets
(hope input keys are well distributed originally) .

(H2) h is easy to compute.

14 / 22

Hash functions

I Simpler if we start with keys that are already integers.
I Trickier if the original key is not Integer type (eg string).

One approach: Split hash function into:
I hash code and
I compression map.

Arbitrary
Objects

Integers {0,...,N−1}
map

hash code compression

15 / 22

Hash Codes
I Keys (of any type) are just sequences of bits in memory.
I Basic idea: Convert bit representation of key to a binary

integer, giving the hash code of the key.
I But computer integers have bounded length (say 32 bits).

I consider bit representation of key as sequence of 32-bit
integers a0, . . . , a`�1

I Summation method: Hash code is

a0 + · · ·+ a`�1 mod N

I Polynomial method: Hash code is

a0 + a1 · x + a2 · x2 + · · ·+ a`�1 · x`�1 mod N

(for some integer x).

Sometimes N = 232.

16 / 22

Evaluating Polynomials
Horner’s Rule:

a0 + a1 · x + a2 · x2 + · · ·+ a`�1 · x`�1

=
a0 + a1 · x + a2 · x · x + · · ·+ a`�1 · x · x · · · x [⇥(`2) operations]

=
a0 + x(a1 + x(a2 + · · ·+ x(a`�2 + x ·+a`�1) · · ·)) [⇥(`) operations]

Has been proved to be best possible.

Note: Sensible to reduce mod N after each operation.

Warning: Deciding what is a “good hash function” is something
of a “black art”.

Polynomials look good because it is harder to see regularities
(many keys mapping to the same hash value).
Warning: we haven’t proved anything! For some situations
there are bad regularities, usually due to a bad choice of N.

17 / 22

Hash functions for character strings

Characters are 7-bit numbers (0, . . . , 127).

I x = 128,N = 96. Bad for small words.
(because gcd(96, 128) = 32. NOT coprime)

I x = 128,N = 97, good.

I x = 127,N = 96, good.

18 / 22

Compression Map

Integer k is mapped to

|ak + b| mod N,

where a, b are randomly chosen integers.

Whole point of hashing is to “Compress” (evenly).

Works particularly well if a, N are coprime (experimental
observation only).

19 / 22

Quick quiz question

Consider the hash function

h(k) = 3k mod 9.

Suppose we use h to hash exactly one item for every key
k = 0, . . . , 9M � 1 (for some big M) into a bucket array with 9
buckets B[0],B[1], . . . ,B[8]. How many items end up in bucket
B[5]?

1. 0.
2. M.
3. 2M.
4. 4M.

Answer is 0.

20 / 22

Load Factors and Re-hashing

I Number of items: n
Length of bucket array: N

Load factor :
n
N

I High load factor (definitely) causes many collisions (large
buckets).
Low load factor - waste of memory space.
Good compromise: Load factor around 3/4.

I Choose N to be a prime number around (4/3)n.
I If load factor gets too high or too low, re-hash (amortised

analysis similar to dynamic arrays).

21 / 22

JVC and HashMap

I No duplicate keys.
I will hash many different types of key.
I User can specify - initial capacity (def. N=16),
load factor (def. 3/4).

I Dynamic Hash table - “re-hash” takes place frequently
behind scenes.

I Different hash functions for different key domains. For
String, uses polynomial hash code with a = 31.

I Hashtable is more-or-less identical.

22 / 22

Reading and Resources

I If you have [GT]: The “Maps and Dictionaries” chapter.
I If you have [CLRS]: The “Hash tables” chapter.

Nicest: “Algorithms in Java”, by Robert Sedgewick (3rd
ed), chapter 14.

I Two nice exercises on Lecture Note 4 (handed out).

