Inf 2B: Asymptotic notation and Algorithms
Lecture 2B of ADS thread

Kyriakos Kalorkoti

School of Informatics
University of Edinburgh

Worst-case (and best-case) running-time

We almost always work with Worst-case running time in Inf2B:
Definition
The (worst-case) running time of an algorithm A is the function

Ta - N — N where Ta(n) is the maximum number of
computation steps performed by A on an input of size n.

Definition

The (best-case) running time of an algorithm A is the function
Ba : N — N where Ba(n) is the minimum number of
computation steps performed by A on an input of size n.

We only use Best-case for explanatory purposes.

1/18

3/18

Reminder of Asymptotic Notation

Let f,g : N — R be functions. We say that:

» fis O(g) if there is some ny € N and some ¢ > 0 € R such
that for all n > ny we have

0 < f(n) <cg(n.

» fisQ(g) if thereis an ny € Nand ¢ > 0 in R such that for
all n > ng we have

f(n) > cg(n) > 0.

» fis ©(g), or f has the same asymptotic growth rate as g, if
fis O(g) and Q(g).

Asymptotic notation for Running-time

How do we apply O, Q2, © to analyse the running-time of an
algorithm A?
Possible approach:

» We analyse A to obtain the worst-case running time
function Ta(n).

» We then go on to derive upper and lower bounds on (the
growth rate of) Ta(n), interms of O(-), Q(-).

In fact we use asymptotic notation with the analysis, much
simpler (no need to give names to constants, takes care of low
level detail that isn’t part of the big picture).

» We aim to have matching O(-), Q(-) bounds hence have
a ©(-) bound.

» Not always possible, even for apparently simple algorithms.

2/18

4/18

Example
algA(A,r,s)
1. if r < sthen
2. fori«+ rtosdo
3. forj <+ itosdo
4, m <+ |4
5. algB(A,i,m—1)
6. algB(A, m, j)
7. m«+ |52
8. algA(A,r,m—1)
9. algA(A,m,s)

algB(A,r,s)

1. if A[r] < A[s] then
swap A[r] with A[s]

2.

3.ifr<s—rthen

4.

algA(A,r,s—r)

Picture of Tinsearch(n), Biinsearch(N)

70
65

60
55
50
45
40
35
30
25
20
15
10

N T T T

JT

B(n)=c+c,+c;

45

5/18

7/18

linSearch

Input: Integer array A, integer k being searched.
Output: The least index i such that A[i] = k.

Algorithm linSearch(A, k)

1. for i+ 0to A.length—1 do
2. if A[i] = k then

3. return j

4. return —1

(Lecture Note 1) Worst-case running time Tjinsearch () satisfies

(¢1 + c2)n+min{cs, ¢1 + €1} < Tinsearch(N)

< (c1 + c2)n+ max{cs, ¢y + C4}.

Best-case running time satisfies Biinsearch(n) = €1 + C2 + Cs.

7-IinSearch(n) - O(n)

Proof.
From Lecture Note 1 we have

Tinsearch(N) < (€1 + C2) - n+ max {c3, (1 + C4) }-
Take ng = max{cs,(c1 +c4)},c=c1+co+ 1.
Then for every n > ng, we have

(c1 + co)n+ ng
(1 +c+1)n=cn.

TIinSearch(n) <
<

Hence TIinSearch(n) = O(n)- U

6/18

8/18

9/18 10/18

Tiinsearch () = Q(n) Misconceptions/Myths about O and Q

We know Tjinsearch(n) = O(n).

Also true: Tingearch(n) = O(n1g(n)), Tinsearch(n) = O(n?). MISCONCEPTION 1
Is Tinsearcn(n) = O(n) the best we can do? If we can show Ta(n) = O(f(n)) for some function
f: N — R, then the running time of A on inputs of
YE
S, because size n is bounded by f(n) for sufficiently large n.

Tinsearcn(N) = Q(n). FALSE: Only guaranteed an upper bound of cf(n), for some
Proof. constant ¢ > 0.

Tinsearch(11) = (€1 + c2)n, because all ¢; are positive. Example: Consider linSearch. We could have shown

Take ng =1 and ¢ = ¢ + ¢ in defn of Q. O

Tinsearch = O(%(q + ¢o)n) (or O(an), for any constant « > 0)
exactly as we showed Tjnsearch(n) = O(n) but . ..
Tiinsearcn (1) = ©(n). the worst-case for linSearch is greater than (cy + co)n.

11/18 12/18

Misconceptions/Myths about O and Q2 Insertion Sort

Input: An integer array A

MISCONGEPTION 2 Output: Array A sorted in non-decreasing order

Because Ta(n) = O(f(n)) implies a ¢ f(n) upper

bound on the running-time of A for all inputs of size n, Algorithm insertionSort(A)
then Ta(n) = Q(g(n)) implies a similar lower bound on 1. forj < 1to A.length — 1 do
the running-time of A for all inputs of size n. 2 a+ Al
) ; 3. f+—j—1
FALSE: If Ta(n) = Q(g(n)) for some g : N — R, then there is g .
some constant ¢’ > 0 such that Ta(n) > ¢’ g(n) for all 4. while / 2 0 and A[’]_ > ado
sufficiently large n. g ’,4[’ + 1]1<_ All
But A can be much faster than Ta(n) on other inputs of length n : AR
a(n) Inpu 9 7. Ali+1]« a

that are not worst-case! No lower bound on general inputs of
size n. linSearch graph is an example.

13/18 14/18

Example: Insertion Sort Big-O for Tinsertionsort(1)
Input: |3 |6 | 35 | 1 | 4 |
| Algorithm insertionSort(A)
‘ ! 1. forj+ 1to A.length— 1 do
ool [s [5. ac Al
o 3. e j—1
‘ R 4. while i > 0 and A[i] > ado
o el [] 5. Ali + 1] « Al
6. f—i—1
! ! ! ¢ 7. A[i+ 1] —a
v v v
= e fd sl | Line 1 O(1) time, executed A.length —1 = n— 1 times.

Lines 2,3,7 O(1) time each, executed n — 1 times.
¢ovo Lines 4,5,6 O(1)-time, executed together as for-loop. No. of
= | 1 | 3 |%4|\§ 5|>4 6| execytion§ depends on for-test, . - .
For fixed j, for-loop at 4. takes at most j iterations.

15/18 16/18
Tinsert n) = Q(n?
Algorithm insertionSort(A) msertlonSort() ()
1. forj« 1to A.length— 1 do Harder than O(n?) bound.
2 a<« Al Focus on a BAD instance of size n:
3. +j—1 Take input instance (n,n—1,n—2,...,2,1).
4. while / > 0 and A[i] > ado » Foreveryj=1...,n— 1, insertionSort uses j executions
5 Ali+1] < Al of line 5 to insert A[j].
6. f—1i—1
Th
7. Ali+1]«a en
For a fixed j, lines 2-7 take at most =
/))) Tinsertionsort(N) = Z ¢J
O(1)+0(1) + O(1) + O(j) + O() + O()) + O(1) =
= 0(1) + 0(j) =8 1)
= O(1) + O(n) = CZ/ =
= O(n). =1
There are n— 1 different j-values. Hence S0 Tinsertionsort() = 2(n?) and Tinsertionsort() = ©(1?).

Tinsertionsort(N) = (1 —1)O(n) = O(n)O(n) = O(?).

17/18 18/18

“Typical” asymptotic running times Further Reading

> O(lg n) (logarithmic), » Lecture notes 2 from last week.

> ©(n) (linear), » If you have Goodrich & Tamassia [GT]:

» ©(nlg n) (n-log-n), All of the chapter on “Analysis Tools” (especially the

» O(n?) (quadratic), “Seven functions” and “Analysis of Algorithms” sections).
» O(n®) (cubic), » If you have [CLRS]:

» O(2") (exponential). Read chapter 3 on “Growth of Functions.”

