
Inf 2B: Graphs II - Applications of DFS

Kyriakos Kalorkoti

School of Informatics
University of Edinburgh



Reminder: Recursive DFS

Algorithm dfs(G)

1. Initialise Boolean array visited
by setting all entries to FALSE

2. for all v ∈ V do
3. if not visited [v ] then
4. dfsFromVertex(G, v)

Algorithm dfsFromVertex(G, v)

1. visited [v ]← TRUE

2. for all w adjacent to v do
3. if not visited [w ] then
4. dfsFromVertex(G,w)

Runtime: T (n,m) = Θ(n + m), using Adjacency List
representation.



Trees and Forests

Definition: A tree is a connected graph without any cycles
(disregarding directions of edges).

Note: In computing we use rooted trees, i.e., a distinguished
vertex is chosen as the root.

Definition: A forest is a collection of trees.

DFS Forests:
A DFS traversing a graph builds up a forest:

I vertices are all vertices of the graph,
I edges are those traversed during the DFS.



DFS Forests Example

0

2 3

654

1 0

2 4

51

6

3



Connected components of an undirected graph

G = (V ,E) undirected graph

Definition
I A subset C of V is connected if for all v ,w ∈ C there is a

path from v to w (if G is directed, say strongly connected).
I A connected component of G is a maximal connected

subset C of V .
Maximal means no connected subset C′ of V strictly
contains C.

I G is connected if it only has one connected component,
i.e., if for all vertices v ,w there is a path from v to w .



Connected components (continued)

I Each vertex of an undirected graph is contained in exactly
one connected component.

I For each vertex v of an undirected graph, the connected
component that contains v is precisely the set of all
vertices that are reachable from v .

For an undirected graph G, dfsFromVertex(G, v) visits exactly
the vertices in the connected component of v .



Connected components (continued)

Algorithm connComp(G)

1. Initialise Boolean array visited
by setting all entries to FALSE

2. for all v ∈ V do
3. if visited [v ] = FALSE then
4. print “New Component”
5. ccFromVertex(G, v)



Connected components (continued)

Algorithm ccFromVertex(G, v)

1. visited [v ]← TRUE

2. print v
3. for all w adjacent to v do
4. if visited [w ] = FALSE then
5. ccFromVertex(G,w)



Topological Sorting

Example:
10 tasks to be carried out. Some of them depend on others.

I Task 0 must be completed before Task 1 can be started.
I Task 1 and Task 2 must be done before Task 3 can start.
I Task 4 must be done before Task 0 or Task 2 can start.
I Task 5 must be done before Task 0 or Task 4 can start.
I Task 6 must be done before Task 4, 5 or 7 can start.
I Task 7 must be done before Task 0 or Task 9 can start.
I Task 8 must be done before Task 7 or Task 9 can start.
I Task 9 must be done before Task 2 or Task 3 can start.



Topological order

Definition
Let G = (V ,E) be a directed graph. A topological order of G is
a total order ≺ of the vertex set V such that for all edges
(v ,w) ∈ E we have v ≺ w .



Example (continued)

5

3

1

9

4

76 8

2

0

Does this graph have a topological order?

Yes, the topological sort is:

8 ≺ 6 ≺ 7 ≺ 9 ≺ 5 ≺ 4 ≺ 2 ≺ 0 ≺ 1 ≺ 3.



Topological order (continued)

A digraph that has a cycle does not have a topological order.

Definition
A DAG (directed acyclic graph) is a digraph without cycles.

Theorem
A digraph has a topological order if and only if it is a DAG.



Classification of vertices during DFS

G = (V ,E) graph, v ∈ V . Consider dfs(G).

I v finished if dfsFromVertex(G, v) has been completed.

Vertices can be in the following states:

I not yet visited (call a vertex in this state white),
I visited, but not yet finished (grey).
I finished (black).



Classification of vertices during DFS (continued)

Lemma
Let G be a graph and v a vertex of G. Consider the moment
during the execution of dfs(G) when dfsFromVertex(G, v) is
started. Then for all vertices w we have:

1. If w is white and reachable from v, then w will be black
before v.

2. If w is grey, then v is reachable from w.



Topological sorting

G = (V ,E) digraph. Define order on V as follows:

v ≺ w ⇐⇒ w becomes black before v .

Theorem
If G is DAG then ≺ is a topological order.

Proof.
Suppose (v ,w) ∈ E . Consider dfsFromVertex(G, v).

I If w is already black, then v ≺ w .
I If w is white, then by Lemma part 1, w will be black

before v . Thus v ≺ w .
I If w is grey, then by Lemma part 2, v is reachable from w .

So there is a path p from w to v . Path p and edge (v ,w)
together form a cycle. Contradiction! (G is acyclic . . .)



Topological sorting (continued)

Algorithm topSort(G)

1. Initialise array state
by setting all entries to white.

2. Initialise linked list L
3. for all v ∈ V do
4. if state[v ] = white then
5. sortFromVertex(G, v)
6. print L



Topological sorting (continued)

Algorithm sortFromVertex(G, v)

1. state[v ]← grey
2. for all w adjacent to v do
3. if state[w ] = white then
4. sortFromVertex(G,w)
5. else if state[w ] = grey then
6. print “G has a cycle”
7. halt
8. state[v ]← black
9. L.insertFirst(v)


