Inf 2B: Graphs, BFS, DFS

Kyriakos Kalorkoti

School of Informatics University of Edinburgh

Directed and Undirected Graphs

- A graph is a mathematical structure consisting of a set of vertices and a set of edges connecting the vertices.
- Formally: G = (V, E), where V is a set and $E \subseteq V \times V$.
- For edge e = (u, v) we say that *e* is *directed from u to v*.
- G = (V, E) undirected if for all $v, w \in V$:

$$(v, w) \in E \iff (w, v) \in E.$$

```
Otherwise directed.
Directed \sim arrows (one-way)
Undirected \sim lines (two-way)
```

▶ We assume *V* is finite, hence *E* is also finite.

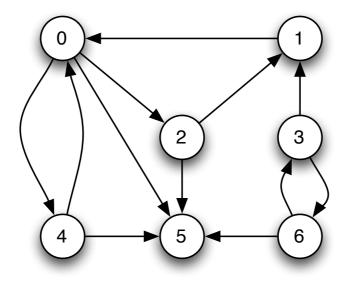
A directed graph

$$G = (V, E),$$

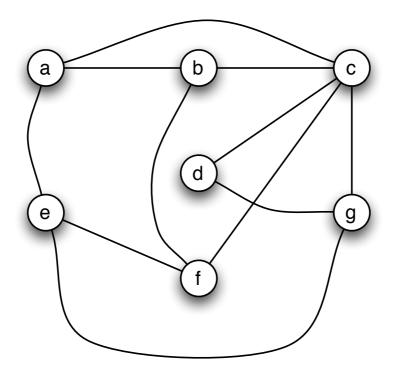
$$V = \{0, 1, 2, 3, 4, 5, 6\},$$

$$E = \{(0, 2), (0, 4), (0, 5), (1, 0), (2, 1), (2, 5),$$

$$(3, 1), (3, 6), (4, 0), (4, 5), (6, 3), (6, 5)\}.$$



An undirected graph



Examples

- Road Maps.
 Edges represent streets and vertices represent crossings (junctions).
- Computer Networks.
 Vertices represent computers and edges represent network connections (cables) between them.
- The World Wide Web.
 Vertices represent webpages, and edges represent hyperlinks.

▶ ...

Adjacency matrices

Let G = (V, E) be a graph with *n* vertices. Vertices of *G* are numbered $0, \ldots, n-1$.

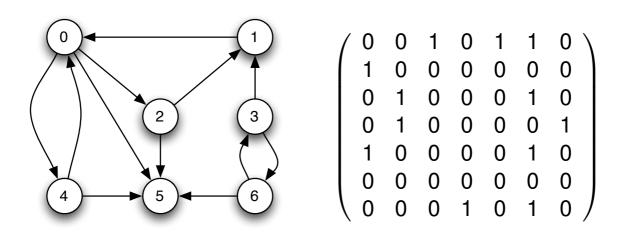
The *adjacency matrix* of G is the $n \times n$ matrix

$$A = (a_{ij})_{0 \le i,j \le n-1}$$

with

 $a_{ij} = \begin{cases} 1, & \text{if there is an edge from vertex } i \text{ to vertex } j; \\ 0, & \text{otherwise.} \end{cases}$

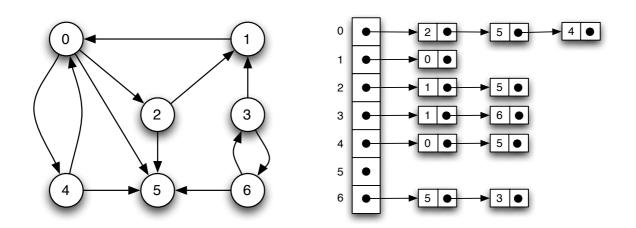
Adjacency matrix (Example)



Adjacency lists

Array with one entry for each vertex v, which is a list of all vertices adjacent to v.

Example



Quick Question

Given: graph G = (V, E), with n = |V|, m = |E|. For $v \in V$, we write in(v) for in-degree, out(v) for out-degree.

Which data structure has faster (asymptotic) worst-case running-time, for *checking if w is adjacent to v*, for a given pair of vertices?

- 1. Adjacency list is faster.
- 2. Adjacency matrix is faster.
- 3. Both have the same asymptotic worst-case running-time.
- 4. It depends.

Answer: 2. For an Adjacency Matrix we can check in $\Theta(1)$ time. An adjacency list structure takes $\Theta(1 + out(v))$ time.

Quick Question

Given: graph G = (V, E), with n = |V|, m = |E|. For $v \in V$, we write in(v) for in-degree, out(v) for out-degree.

Which data structure has faster (asymptotic) worst-case running-time, for *visiting all vertices w adjacent to v*, for a given vertex v?

- 1. Adjacency list is faster.
- 2. Adjacency matrix is faster.
- 3. Both have the same asymptotic worst-case running-time.
- 4. It depends.

Answer: 3. Adjacency matrix requires $\Theta(n)$ time always. Adjacency list requires $\Theta(1 + out(v))$ time. In worst-case $out(v) = \Theta(n)$.

Adjacency Matrices vs Adjacency Lists

	1	1
	adjacency matrix	adjacency list
Space	$\Theta(n^2)$	$\Theta(n+m)$
Time to check if <i>w</i> adjacent to <i>v</i>	Θ(1)	$\Theta(1 + out(v))$
Time to visit all <i>w</i> adjacent to <i>v</i> .	$\Theta(n)$	$\Theta(1 + out(v))$
Time to visit all edges	$\Theta(n^2)$	$\Theta(n+m)$

Sparse and dense graphs

G = (V, E) graph with *n* vertices and *m* edges

Observation: $m \le n^2$

- G dense if m close to n^2
- G sparse if m much smaller than n^2

Graph traversals

A *traversal* is a strategy for visiting all vertices of a graph while respecting edges.

BFS = breadth-first search

DFS = depth-first search

General strategy:

- 1. Let *v* be an arbitrary vertex
- 2. Visit all vertices reachable from v
- 3. If there are vertices that have not been visited, let *v* be such a vertex and go back to (2)

Graph Searching (general Strategy)

Algorithm searchFromVertex(*G*, *v*)

- 1. mark v
- 2. put v onto schedule S
- 3. while schedule S is not empty do
- 4. remove a vertex *v* from *S*
- 5. for all w adjacent to v do
- 6. if w is not marked then
- 7. mark *w*
- 8. put *w* onto schedule *S*

Algorithm search(*G*)

- 1. ensure that each vertex of *G* is not marked
- 2. initialise schedule S
- 3. for all $v \in V$ do
- 4. **if** *v* is not marked **then**
- 5. searchFromVertex(G, v)

Three colour view of vertices

Previous algorithm has vertices in one of two states: unmarked and marked. Progression is

 $\textit{unmarked} \longrightarrow \textit{marked}$

- Can also think of them as being in one of three states (represented by colours):
 - White: not yet seen (not yet investigated).
 - *Grey*: put on schedule (under investigation).
 - Black: taken off schedule (completed).

Progression is

white \longrightarrow grey \longrightarrow black

We will use the three colour scheme when studying an algorithm for topological sorting of graphs.

BFS

Visit all vertices reachable from v in the following order:

- ► V
- all neighbours of v
- all neighbours of neighbours of v that have not been visited yet
- all neighbours of neighbours of neighbours of v that have not been visited yet
- ► etc.

BFS (using a Queue)

Algorithm bfs(G)

- 1. Initialise Boolean array visited, setting all entries to FALSE.
- 2. Initialise Queue Q
- 3. for all $v \in V$ do
- 4. **if** *visited*[v] = FALSE **then**
- 5. bfsFromVertex(G, v)

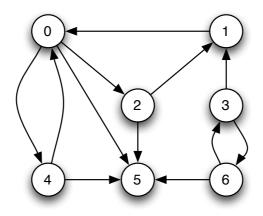
BFS (using a Queue)

Algorithm bfsFromVertex(G, v)

- 1. visited[v] = TRUE
- 2. Q.enqueue(v)
- 3. while not Q.isEmpty() do
- 4. $v \leftarrow Q.dequeue()$
- 5. for all *w* adjacent to *v* do
- 6. **if** *visited*[w] = FALSE **then**
- 7. visited[w] = TRUE
- 8. *Q*.enqueue(*w*)

Algorithm bfsFromVertex(G, v)

- *visited*[*v*] = TRUE 1.
- Q.enqueue(v) 2.
- while not Q.isEmpty() do 3.
- $v \leftarrow Q$.dequeue() 4.
- 5. for all w adjacent to v do
- 6. if *visited*[*w*] = FALSE then 7.
 - *visited*[*w*] = TRUE
- Q.enqueue(w) 8.



Quick Question

Given a graph G = (V, E) with n = |V|, m = |E|, what is the worst-case running time of BFS, in terms of m, n?

- 1. $\Theta(m+n)$
- **2**. $\Theta(n^2)$
- **3**. $\Theta(mn)$
- 4. Depends on the number of components.

Answer: 1. To see this need to be careful about bounding running time for the loop at lines 5–8. *Must* use the Adjacency List structure.

Answer: 2. if we use adjacency matrix representation.

DFS

Visit all vertices reachable from v in the following order:

- ► V
- some neighbour w of v that has not been visited yet
- some neighbour x of w that has not been visited yet
- etc., until the current vertex has no neighbour that has not been visited yet
- Backtrack to the first vertex that has a yet unvisited neighbour v'.
- Continue with v', a neighbour, a neighbour of the neighbour, etc., backtrack, etc.

DFS (using a stack)

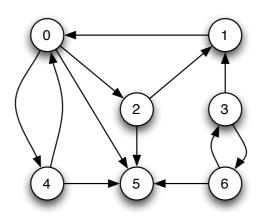
Algorithm dfs(G)

- 1. Initialise Boolean array visited, setting all to FALSE
- 2. Initialise Stack S
- 3. for all $v \in V$ do
- 4. **if** *visited*[v] = FALSE **then**
- 5. dfsFromVertex(G, v)

DFS (using a stack)

Algorithm dfsFromVertex(G, v)

- 1. S.push(v)
- 2. while not S.isEmpty() do
- 3. $v \leftarrow S.pop()$
- 4. **if** *visited*[v] = FALSE **then**
- 5. visited[v] = TRUE
- 6. for all w adjacent to v do
- 7. *S*.push(*w*)



Recursive DFS

Algorithm dfs(G)

- 1. Initialise Boolean array *visited* by setting all entries to FALSE
- 2. for all $v \in V$ do
- 3. **if** *visited*[v] = FALSE **then**
- 4. dfsFromVertex(G, v)

Algorithm dfsFromVertex(G, v)

- 1. *visited*[v] \leftarrow TRUE
- 2. for all w adjacent to v do
- 3. **if** *visited*[w] = FALSE **then**
- 4. dfsFromVertex(G, w)

Analysis of DFS

G = (V, E) graph with *n* vertices and *m* edges Without recursive calls:

- dfs(G): time $\Theta(n)$
- dfsFromVertex(G, v): time $\Theta(1 + \text{out-degree}(v))$

Overall time:

$$T(n,m) = \Theta(n) + \sum_{v \in V} \Theta(1 + \text{out-degree}(v))$$

= $\Theta(n + \sum_{v \in V} (1 + \text{out-degree}(v)))$
= $\Theta(n + n + \sum_{v \in V} \text{out-degree}(v))$
= $\Theta(n + \sum_{v \in V} \text{out-degree}(v))$
= $\Theta(n + m)$