
Inf 2B: Heaps and Priority Queues
Lecture 6 of ADS thread

Kyriakos Kalorkoti

School of Informatics
University of Edinburgh



Stacks, Queues, and Priority Queues

Stacks, queues, and priority queues are all ADTs for storing
collections of elements. They differ in their access policy:

Stacks: Last-in-first-out (LIFO)

Queues: First-in-first-out (FIFO)

Priority Queues: Elements have a priority associated with
them. An element with highest priority gets out first.



The PriorityQueue ADT

I A PriorityQueue stores a collection of elements.
I Every element is associated with a key, which is taken

from some linearly ordered set, such as the integers.
I Keys represent priorities:

larger key means higher priority.
Variant: lower key means higher priority.

I Not really different, just define a new order ≤∗ on keys by

k1 ≤∗ k2 ⇐⇒ k1 ≥ k2,

i.e., reverse existing order.

Different from Dictionary—here the meaning of a key is its
relative value (in the collection).



The PriorityQueue ADT

Methods of PriorityQueue:
I insertItem(k ,e): Insert element e with key k .
I maxElement(): Return an element with maximum key; an

error occurs if the priority queue is empty.
I removeMax(): Return and remove an element with

maximum key; an error occurs if the priority queue is
empty.

I isEmpty(): Return TRUE if the priority queue is empty and
FALSE otherwise.

I No findElement(k) or removeItem(k) methods (because k
does not mean anything externally).



The Search Tree Implementation

Observation: The maximum key in a binary search tree is
always stored in the rightmost interior vertex.

Therefore, all Priority Queue methods can be implemented on
an AVL tree with running time Θ(lg(n)).
Could we do better?
maxElement() and removeMax() are simpler versions of the
findElement() and removeItem() for Dictionary.



Almost Complete Binary Trees

I All levels except maybe the last one have the maximum
number of vertices.

I On the last level, all internal vertices are to the left of all
leaves.



Example Binary Trees

Which of these are “Almost Complete"?

Answer: First one only.



Height of an Almost Complete Tree
Theorem: An almost complete binary tree with n internal
vertices has height

blg(n)c+ 1.

(We automatically have h = O(lg n)) WHY?
Proof: A complete binary tree of height h has 2h − 1 internal
vertices (proof by easy induction on h).
For an almost-complete tree, of height h number of internal
vertices n is:

I strictly more than number of internal vertices of a complete
tree of height h − 1, so n ≥ (2h−1 − 1) + 1 = 2h−1;

I at most the number of internal vertices of a complete tree
of height h, so n ≤ 2h − 1 < 2h.

Thus 2h−1 ≤ n < 2h. Hence

h − 1 ≤ lg n < h⇒ h − 1 ≤ blg nc < h
⇒ h = blg nc+ 1.



Abstract Heaps

Definition: A heap is an almost complete binary tree whose
internal vertices store items such that the following heap
condition is satisfied:

(H) For every vertex v other than the root, the key stored
at v is smaller than or equal to the key stored at the parent
of v .

I So the maximum element is at the root.

The last vertex of a heap of height h is the rightmost internal
vertex in the h th level.



Finding the Maximum

Algorithm maxElement()

1. return root .element

Runtime is Θ(1).



Insertion

Algorithm insertItem(k ,e)

1. Create new last vertex v .
2. while v is not the root and k > v .parent .key do
3. store the item stored at v .parent at v
4. v ← v .parent
5. store (k ,e) at v

“Bubble" the item up the tree.
Basically swap v with v .parent if v ’s key is bigger.

Takes Θ(1) for adding new last vertex (initially), and Θ(1) for
every swap. Hence Θ(lg n) worst-case in total.



insertItem
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insertItem(48), first add at “last vertex”.
Need to swap 48 with parent 30, because 48 > 30.



insertItem
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48 has now moved-up
Now need to swap 48 with parent 45, because 48 > 45.



insertItem
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Done. 48 is less than root 88, no swap needed.



Removing the Maximum

I Idea: Copy item in “last vertex" into root.
I Delete last vertex (easy to delete at end of tree).
I Now parent greater than child property might be false.

Need to fix.
I New method Heapify(v):

I Let s be v .left or v .right (whichever has max key).
I Swap s and v .
I Call Heapify() recursively.

I Θ(h) = Θ(lg n) time in total. Formal proof in notes.



Removing the Maximum

Algorithm removeMax()

1. e← root .element
2. root .item← last .item
3. delete last
4. heapify(root)
5. return e;

Algorithm heapify(v)

1. if v .left is an internal vertex
and v .left .key > v .key then

2. s ← v .left
3. else
4. s ← v
5. if v .right is an internal vertex

and v .right .key > s.key then
6. s ← v .right
7. if s 6= v then
8. swap the items of v and s
9. heapify(s)



removeMax
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Need to copy over “last vertex” onto root.



removeMax
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Now we call heapify(root).



removeMax

17

81716

13 2 16 9 4

45

48

30

Max child of root is 48 on right, need to swap,
and then call heapify on 30 as the child.



removeMax
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Max child of 30 is 45 on left, need to swap,
and then call heapify on 30 as the child.



removeMax
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Max child of 30 is 4, less than 30. ok. Finish.



Storing Heaps in Arrays
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Direct mapping: j-th element of heap stored in index j − 1.
Can use (2i − 2) + j for index of j th element on level i .
(depends on “Almost-complete" property).



Working on Heaps as Arrays

I maxElement(): Just look at index 0 of array.
I insertItem(k ,e): Insert into index size.

I size← size + 1.

I Do “bubbling" using array structure:
I v ’s left child is in index 2v + 1;
I right child in index 2v + 2.

I removeMax():
I Copy item at size − 1 into index 0.
I size← size − 1.
I Do “swapping" using array structure.

I Using dynamic arrays get Θ(lg n) amortised time for
insertItem(k ,e) and removeMax().



Turning an Array into a Heap

Algorithm buildHeap(H)

1. n← H.length
2. for v ← bn−2

2 c downto 0 do
3. heapify(v)

Theorem: The running time of buildHeap is Θ(n), where n is
the length of the array H.



Resources

I The Java Collections Framework has an implementation of
PriorityQueue (using heaps) in its java.util package:
http://java.sun.com/j2se/1.5.0/docs/

api/java/util/PriorityQueue.html

I If you have [GT]: read the “Priority Queues" chapter
I If you have [CLRS]: look at the “Heapsort" chapter (but

ignore the sorting for now).


