Inf 2B: Hash Tables Lecture 4 of ADS thread

Kyriakos Kalorkoti

School of Informatics University of Edinburgh

Dictionaries

A *Dictionary* stores key–element pairs, called *items*. Several elements might have the same key. Provides three methods:

- findElement(k): If the dictionary contains an item with key k, then return its element; otherwise return the special element NO_SUCH_KEY.
- insertItem(k, e): Insert an item with key k and element e.
- removeltem(k): If the dictionary contains an item with key k, then delete it and return its element; otherwise return NO_SUCH_KEY.

List Dictionaries

- Items are stored in a singly linked list (in any order).
- Algorithms for all methods are straightforward.
- Running Time:

insertItem :	Θ(1)
findElement :	$\Theta(n)$
removeltem :	$\Theta(n)$

(*n* always denotes the number of items stored in the dictionary)

Direct Addressing

Suppose:

- Keys are integers in the range $0, \ldots, N-1$.
- All elements have distinct keys.

A data structure realising *Dictionary* (sometimes called a *direct address table*):

- Elements are stored in array *B* of length *N*.
- The element with key k is stored in B[k].
- Running Time: $\Theta(1)$ for all methods.

Bucket Arrays

Suppose:

- Keys are integers in the range $0, \ldots, N-1$.
- Several elements might have the same key, so collisions may occur.

What do we do about these collisions?

Store them all together in a *List* pointed to by B[k] (sometimes called *chaining*).

Bucket Arrays

Bucket array implementation of Dictionary:

- Bucket array B of length N holding Lists
- Element with key k is stored in the List B[k].
- Methods of Dictionary are implemented using insertFirst(), first(), and remove(p) of List

Running Time: $\Theta(1)$ for all methods (with linked list implementation of *List* - *p* is always the first pointer, so we can easily keep track of it).

▶ Works because findElement(*k*) and removeItem(*k*) only need 1 item with key *k*.

A good solution if *N* is not much larger than the number of keys (a small constant multiple).

Hash Tables

Dictionary implementation for arbitrary keys (not necessarily all distinct).

Two components:

- ► Hash function h mapping keys to integers in the range 0,..., N - 1 (for some suitable N ∈ N).
- Bucket array B of length N to hold the items.

Item (key–element pair) with key k is stored in the bucket B[h(k)].

Issues for Hash Tables

- Need to consider collision handling. (Here we might have h(k₁) = h(k₂) even for k₁ ≠ k₂, so List implementation is more complicated.
- Analyse the running time.
- Find good hash functions.
- Choose appropriate N.

Problem: Elements with distinct keys might go into the same bucket.

Solution: Let buckets be *list dictionaries* storing the items (key-element pairs).

The methods:

Algorithm findElement(*k*)

- 1. Compute h(k)
- 2. **return** B[h(k)].findElement(k)

Algorithm InsertItem(k, e)

- 1. Compute h(k)
- 2. B[h(k)].insertItem(k, e)

Algorithm removeItem(k)

- 1. Compute h(k)
- 2. return B[h(k)].removeltem(k)

Running time?

Depends on the list methods

- B[h(k)].findElement(k),
- B[h(k)].insertItem(k, e), and
- ► B[h(k)].removeItem(k).

Assume we Insert at front (or end):

• $\Theta(1)$ time for B[h(k)].insertItem(k, e).

Analysis

- Let T_h be the running time required for computing h (more precisely: T_h(n_{key}), where n_{key} is the size of the key)
- Let m be the maximum size of a bucket. Then the running time of the hash table methods is:

insertItem :	$T_h + \Theta(1)$
findElement :	$T_h + \Theta(m)$
removeltem :	$T_h + \Theta(m)$

Worst case:

$$m = n$$
.

m depends on hash function and on input distribution of keys.

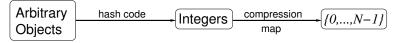
Hash function *h* maps keys to $\{0, \ldots, N-1\}$.

Criteria for a good hash function:

(H1) *h* evenly distributes the keys over the range of buckets (hope input keys are well distributed originally).
(H2) *h* is easy to compute.

Hash functions

- Simpler if we start with keys that are already integers.
- Trickier if the original key is not Integer type (eg string).
 One approach: Split hash function into:
 - hash code and
 - compression map.



Hash Codes

- Keys (of any type) are just sequences of bits in memory.
- Basic idea: Convert bit representation of key to a binary integer, giving the hash code of the key.
- But computer integers have bounded length (say 32 bits).
 - ► consider bit representation of key as sequence of 32-bit integers a₀,..., a_{ℓ-1}
- Summation method: Hash code is

$$a_0+\dots+a_{\ell-1} model{N}$$
 M

Polynomial method: Hash code is

$$a_0 + a_1 \cdot x + a_2 \cdot x^2 + \dots + a_{\ell-1} \cdot x^{\ell-1} \mod N$$

(for some integer *x*).

Sometimes $N = 2^{32}$.

Evaluating Polynomials

Horner's Rule:

$$a_0 + a_1 \cdot x + a_2 \cdot x^2 + \dots + a_{\ell-1} \cdot x^{\ell-1}$$

$$=$$

$$a_0 + a_1 \cdot x + a_2 \cdot x \cdot x + \dots + a_{\ell-1} \cdot x \cdot x \cdots x$$

$$=$$

$$a_0 + x(a_1 + x(a_2 + \dots + x(a_{\ell-2} + x \cdot + a_{\ell-1}) \cdots))$$

$$[\Theta(\ell) \text{ operations}]$$

Has been *proved* to be best possible.

Note: Sensible to reduce mod *N* after each operation.

Warning: Deciding what is a "good hash function" is something of a "black art".

Polynomials look good because it is harder to *see* regularities (many keys mapping to the same hash value). **Warning:** we haven't proved anything! For some situations there are bad regularities, usually due to a bad choice of *N*.

Characters are 7-bit numbers $(0, \ldots, 127)$.

► x = 128, N = 96. Bad for small words. (because gcd(96, 128) = 32. NOT coprime)

Integer k is mapped to

 $|ak + b| \mod N$,

where *a*, *b* are randomly chosen integers.

Whole point of hashing is to "Compress" (evenly).

Works particularly *well* if *a*, *N* are coprime (*experimental observation only*).

Quick quiz question

Consider the hash function

 $h(k) = 3k \mod 9.$

Suppose we use *h* to hash exactly one item for every key k = 0, ..., 9M - 1 (for some big *M*) into a bucket array with 9 buckets *B*[0], *B*[1], ..., *B*[8]. How many items end up in bucket *B*[5]?

- 1. 0.
- **2**. *M*.
- **3**. 2*M*.
- **4**. 4*M*.

Answer is 0.

Load Factors and Re-hashing

Number of items: n
 Length of bucket array: N

Load factor:

n N

 High load factor (definitely) causes many collisions (large buckets).

Low load factor - waste of memory space. *Good compromise:* Load factor around 3/4.

- Choose N to be a prime number around (4/3)n.
- If load factor gets too high or too low, re-hash (amortised analysis similar to dynamic arrays).

JVC and HashMap

- No duplicate keys.
- will hash many different types of key.
- User can specify initial capacity (def. N=16), load factor (def. 3/4).
- Dynamic Hash table "re-hash" takes place frequently behind scenes.
- Different hash functions for different key domains. For String, uses polynomial hash code with a = 31.
- ► Hashtable is more-or-less identical.

Reading and Resources

- If you have [GT]: The "Maps and Dictionaries" chapter.
- If you have [CLRS]: The "Hash tables" chapter.
 Nicest: "Algorithms in Java", by Robert Sedgewick (3rd ed), chapter 14.
- Two nice exercises on Lecture Note 4 (handed out).