
1 / 18

Inf 2B: Asymptotic notation and Algorithms
Lecture 2B of ADS thread

Kyriakos Kalorkoti

School of Informatics
University of Edinburgh



2 / 18

Reminder of Asymptotic Notation

Let f ,g : N→ R be functions. We say that:
I f is O(g) if there is some n0 ∈ N and some c > 0 ∈ R such

that for all n ≥ n0 we have

0 ≤ f (n) ≤ c g(n).

I f is Ω(g) if there is an n0 ∈ N and c > 0 in R such that for
all n ≥ n0 we have

f (n) ≥ c g(n) ≥ 0.

I fff is Θ(g), or f has the same asymptotic growth rate as g, if
f is O(g) and Ω(g).



3 / 18

Worst-case (and best-case) running-time

We almost always work with Worst-case running time in Inf2B:

Definition
The (worst-case) running time of an algorithm A is the function
TA : N→ N where TA(n) is the maximum number of
computation steps performed by A on an input of size n.

Definition
The (best-case) running time of an algorithm A is the function
BA : N→ N where BA(n) is the minimum number of
computation steps performed by A on an input of size n.
We only use Best-case for explanatory purposes.



4 / 18

Asymptotic notation for Running-time

How do we apply O,Ω,Θ to analyse the running-time of an
algorithm A?

Possible approach:
I We analyse A to obtain the worst-case running time

function TA(n).
I We then go on to derive upper and lower bounds on (the

growth rate of) TA(n), in terms of O
(
·
)
, Ω
(
·
)
.

In fact we use asymptotic notation with the analysis, much
simpler (no need to give names to constants, takes care of low
level detail that isn’t part of the big picture).

I We aim to have matching O
(
·
)
, Ω
(
·
)

bounds hence have
a Θ

(
·
)

bound.
I Not always possible, even for apparently simple algorithms.



5 / 18

Example

algA(A,r,s) algB(A,r,s)
1. if r < s then 1. if A[r ] < A[s] then
2. for i ← r to s do 2. swap A[r ] with A[s]
3. for j ← i to s do 3. if r < s − r then
4. m← b i+j

2 c 4. algA(A, r , s − r)
5. algB(A, i ,m − 1)
6. algB(A,m, j)
7. m← b r+s

2 c
8. algA(A, r ,m − 1)
9. algA(A,m, s)



6 / 18

linSearch

Input: Integer array A, integer k being searched.
Output: The least index i such that A[i] = k .

Algorithm linSearch(A, k)

1. for i ← 0 to A.length − 1 do
2. if A[i] = k then
3. return i
4. return −1

(Lecture Note 1) Worst-case running time TlinSearch(n) satisfies

(c1 + c2)n + min{c3, c1 + c4} ≤ TlinSearch(n)

≤ (c1 + c2)n + max{c3, c1 + c4}.

Best-case running time satisfies BlinSearch(n) = c1 + c2 + c3.



7 / 18

Picture of TlinSearch(n), BlinSearch(n)

1B(n)=c +c +c2

1T(n)=(c +c )n + ...2

45403530252015105

10

5

15

25

20

30

35

40

45

50

55

60

70
65

3



8 / 18

TlinSearch(n) = O(n)

Proof.
From Lecture Note 1 we have

TlinSearch(n) ≤ (c1 + c2) · n + max
{

c3, (c1 + c4)
}
.

Take n0 = max{c3, (c1 + c4)}, c = c1 + c2 + 1.
Then for every n ≥ n0, we have

TlinSearch(n) ≤ (c1 + c2)n + n0

≤ (c1 + c2 + 1)n = cn.

Hence TlinSearch(n) = O(n).



9 / 18

TlinSearch(n) = Ω(n)

We know TlinSearch(n) = O(n).
Also true: TlinSearch(n) = O(n lg(n)), TlinSearch(n) = O(n2).

Is TlinSearch(n) = O(n) the best we can do?

YES, because . . .

TlinSearch(n) = Ω(n).

Proof.
TlinSearch(n) ≥ (c1 + c2)n, because all ci are positive.
Take n0 = 1 and c = c1 + c2 in defn of Ω.

TlinSearch(n) = Θ(n).



10 / 18

Misconceptions/Myths about O and Ω

MISCONCEPTION 1

If we can show TA(n) = O(f (n)) for some function
f : N→ R, then the running time of A on inputs of
size n is bounded by f (n) for sufficiently large n.

FALSE: Only guaranteed an upper bound of cf (n), for some
constant c > 0.

Example: Consider linSearch. We could have shown
TlinSearch = O(1

2(c1 + c2)n) (or O(αn), for any constant α > 0)
exactly as we showed TlinSearch(n) = O(n) but . . .
the worst-case for linSearch is greater than 1

2(c1 + c2)n.



11 / 18

Misconceptions/Myths about O and Ω

MISCONCEPTION 2

Because TA(n) = O(f (n)) implies a c f (n) upper
bound on the running-time of A for all inputs of size n,
then TA(n) = Ω(g(n)) implies a similar lower bound on
the running-time of A for all inputs of size n.

FALSE: If TA(n) = Ω(g(n)) for some g : N→ R, then there is
some constant c′ > 0 such that TA(n) ≥ c′ g(n) for all
sufficiently large n.
But A can be much faster than TA(n) on other inputs of length n
that are not worst-case! No lower bound on general inputs of
size n. linSearch graph is an example.



12 / 18

Insertion Sort

Input: An integer array A
Output: Array A sorted in non-decreasing order

Algorithm insertionSort(A)

1. for j ← 1 to A.length − 1 do
2. a← A[j]
3. i ← j − 1
4. while i ≥ 0 and A[i] > a do
5. A[i + 1]← A[i]
6. i ← i − 1
7. A[i + 1]← a



13 / 18

Example: Insertion Sort
3 6 5 1 4Input:

3 6 5 1 4j=1

3 1 4j=2 5 66 5

1 4j=3 653 6513

5 64564j=4 1 3



14 / 18

Big-O for TinsertionSort(n)

Algorithm insertionSort(A)

1. for j ← 1 to A.length − 1 do
2. a← A[j]
3. i ← j − 1
4. while i ≥ 0 and A[i] > a do
5. A[i + 1]← A[i]
6. i ← i − 1
7. A[i + 1]← a

Line 1 O(1) time, executed A.length − 1 = n − 1 times.
Lines 2,3,7 O(1) time each, executed n − 1 times.
Lines 4,5,6 O(1)-time, executed together as for-loop. No. of

executions depends on for-test, j .
For fixed j , for-loop at 4. takes at most j iterations.



15 / 18

Algorithm insertionSort(A)

1. for j ← 1 to A.length − 1 do
2. a← A[j]
3. i ← j − 1
4. while i ≥ 0 and A[i] > a do
5. A[i + 1]← A[i]
6. i ← i − 1
7. A[i + 1]← a

For a fixed j , lines 2-7 take at most

O(1)+O(1) + O(1) + O(j) + O(j) + O(j) + O(1)

= O(1) + O(j)
= O(1) + O(n)

= O(n).

There are n − 1 different j-values. Hence

TinsertionSort(n) = (n − 1)O(n) = O(n)O(n) = O(n2).



16 / 18

TinsertionSort(n) = Ω(n2)

Harder than O(n2) bound.
Focus on a BAD instance of size n:
Take input instance 〈n,n − 1,n − 2, . . . ,2,1〉.

I For every j = 1 . . . ,n − 1, insertionSort uses j executions
of line 5 to insert A[j].

Then

TinsertionSort(n) ≥
n−1∑
j=1

c j

= c
n−1∑
j=1

j = c
n(n − 1)

2
.

So TinsertionSort(n) = Ω(n2) and TinsertionSort(n) = Θ(n2).



17 / 18

“Typical” asymptotic running times

I Θ(lg n) (logarithmic),
I Θ(n) (linear),
I Θ

(
n lg n

)
(n-log-n),

I Θ(n2) (quadratic),
I Θ(n3) (cubic),
I Θ(2n) (exponential).



18 / 18

Further Reading

I Lecture notes 2 from last week.
I If you have Goodrich & Tamassia [GT]:

All of the chapter on “Analysis Tools” (especially the
“Seven functions” and “Analysis of Algorithms” sections).

I If you have [CLRS]:
Read chapter 3 on “Growth of Functions.”


	Asymptotic notation on functions
	Asymptotic notation for Running-Time

