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Algorithm dfs(G)
Graphs and DFS
Initialise Boolean array visited by setting all entries to FALSE
Initialise Sfack S

1
In this note, we turn to an alternative to BFS, which is Depth-First Search (DFS). 2
3. forallv eV do
4
5

10.1 Depth-first search if not visited[v] then

A DFS starting at a vertex v first visits v, then some neighbour w of v, then some dfsFromVertex(G, v)
neighbour = of w that has not been visited before, etc. When it gets stuck, the
DFS backtracks until it finds the first vertex that still has a neighbour that has
not been visited before. It continues with this neighbour until it has to backtrack
again. Eventually, it will visit all vertices reachable from v. Then a new DFS is
started at some vertex that is not reachable from v, until all vertices have been Algorithm dfsfromVertex(G, v)

visited. S.push(v)
while not S.isEmpty() do

1.
2.
0 0 3. v+ S.pop()
v 4. if not visited[v] then
5.
() 6.
7

Algorithm 10.2

visited[v] = TRUE
for all w adjacent to v do
S.push(w)

Algorithm 10.3
Figure 10.1. A directed graph

Algorithm dfs(G)

Reconsider the graph of Lecture Note 13, shown above in Figure 10.1. A DFS

Initialise Boolean array visited by setting all entries to FALSE
on the graph of Figure 10.1 starting at 0 might visit the vertices in the order

1

2. forallveV do
0,2,1,5,4. 3. if not visited[v] then

4

After it has visited 0,2, 1 the DFS backtracks to 2, visits 5, then backtracks to 0, dfsfromVertex(G, v)

and visits 4. A DFS starting at 0 might also visit the vertices in the order 0,4, 5,2,1 Algorithm 10.4
or 0,5,4,2,1 or 0,2,5,1,4. As for BFS, this depends on the order in which the
neighbours of a vertex are processed.

DFS can be implemented in a similar way as BFS using a Sfack instead of a

Queue, see Algorithms 10.2 and 10.3. Algorithm dfsfromVertex(d, v)

1. wisited[v] < TRUE

2. for all w adjacent to v do

3. if not visited|w] then

4 dfsFromVertex(G, w)

10.2 A recursive implementation of DFS

A second way to implementing DFS is via a recursive algorithm (essentially we
rely on the stack used to implement recursion rather than maintaining our own).
To visit all vertices reachable from the start vertex v, we visit v, then the first
neighbour of v and all vertices reachable from this first neighbour—remember
that the search is depth-first. Then it visits the next neighbour and all new

Algorithm 10.5

1 2



Inf2B Algorithms and Data Structures Note 10 Informatics 2B x1.3)

vertices reachable from it, etc. Algorithms 10.4 and 10.5 give pseudocode for a
recursive implementation of DFS.

The analysis of algorithm dfs might seem complicated because of the recur-
sive calls inside the loops. Rather than writing down a recurrence for dfs, let us
analyze the running-time directly. Let n be the number of vertices of the input
graph G and let m = |E|. Then dfs(G) requires time ©(n) for initialisation. More-
over, dfsfromVertex(G,v) requires time O(1 + out-degree(v)), because the loop is
iterated out-degree(v) times (as usual we add 1 in case out-degree(v) = 0)

Now the crucial observation is that dfsfromVertex(G, v) is invoked exactly once
for every vertex v. To see that it is invoked at least once, note that visited[v] is
set to TRUE only if dfsfromVertex(G,v) is invoked. So if the method was never
invoked, then wisited[v] would remain FALSE. But this cannot happen, because
for all v with wisited[v] = FALSE, dfsFromVertex(G,v) is invoked in Line 4 of dfs(G)
(in the v-execution of the loop). To see that dfsfromVertex(G,v) is invoked at
most once, note that it is only invoked if visited[v] = FALSE. However, after its first
execution wisited[v] is TRUE and can never become FALSE again. So dfsfromVer-
tex(G, v) is invoked exactly once for every vertex v.

Therefore, we get the following expression for the running time of dfs(G):

O(n) + Z O(1 + out-degree(v)) = © (n + Z(l + out—degree(u)))

veV veV

) (n +n+ Z out-degree(v))
veV

=0 (n + Z out—degree(v))

veV

Let m be the number of edges of G. Then }_ ., out-degree(v) = m, and we get
Tyts(n,m) = O(n +m).

We count an undirected edge as two edges, one in each direction. We then get
> wey degree(v) = 2m for undirected graphs, but since 2m = ©(m), this makes no
difference.

10.3 DFS Forests

A DFS starting at some vertex v explores the graph by building up a tree that
contains all vertices that are reachable from v and all edges that are used to
reach these vertices. We call this tree a DFS tree. A complete DFS exploring the
full graph (and not only the part reachable from a given vertex v) builds up a
collection of trees, or forest, called a DFS forest.

Suppose that we explore the graph in Figure 10.1 by a DFS starting at vertex 0
that visits the vertices in the following order: 0,2,1,5,4,3,6. The corresponding
DFS forest is shown in Figure 10.6.

Note that a DFS forest is not unique. Figure 10.7 shows another DFS forest
for the graph in Figure 10.1.
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Figure 10.6.

Figure 10.7.

10.4 Connected components

As a first application of DFS, we compute the connected components of an undi-
rected graph G = (V, E). Recall that we say that a subset C of V is connected
if for all v,w € C there is a path from v to w (if v = w there is always a “path”
of length O from v to w.) A connected component of an undirected graph G is
a maximal connected subset C' of V. Here “maximal connected subset” means
that there is no connected subset C’ of V' that strictly contains C. An undirected
graph is connected if it has just one connected component (for all vertices v, w
there is a path from v to w).

Our algorithm is based on the following two simple observations, which do
not necessarily hold for directed graphs:

(1) Each vertex of an undirected graph is contained in exactly one connected
component.

(2) For each vertex v of an undirected graph, the connected component that
contains v is precisely the set of all vertices that are reachable from v.

Hence dfsFromVertex(G, v) visits the set of vertices in the connected component
of v.

We modify dfs as follows: We add a statement print v after line 1 of dfsFromVer-
tex(G,v). After this modification, dfsfromVertex(G,v) prints the vertices in the
connected component of v. Then we add a statement print “New Component”
before each call of dfsfromVertex(G,v) in line 4 of dfs. If the set of connected
components is needed as input for another algorithm, we can instead get dfs to
return the connected components in some convenient format.
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The asymptotic running time of this algorithm for computing the connected
components is clearly the same as the running time of dfs.

Components of directed graphs

It is not so clear what connectivity means in directed graphs. For example, is
the graph in Figure 10.1 connected? It looks “joined up”, but then vertex 6 is
not reachable from vertex 0. We say that a directed graph G is weakly connected
if the undirected graph we obtain from G by disregarding the direction of the
edges is connected. A directed graph is strongly connected if for all vertices v, w
there is a path from v to w and a path from w to v. Strong connectivity is a
more important notion. The graph in Figure 10.1 is weakly connected, but not
strongly connected; for example, there is no path from 0 to 6.

Derived from the notions of weak and strong connectivity, we have weakly
connected components and strongly connected components. For example, the di-
graph (i.e., directed graph) in Figure 10.1 only has one weakly connected compo-
nent (containing all vertices), and it has three strongly connected components:

0,1,2,4
3,6

5.

Computing the weakly connected components of a directed graph is easy: writing
an algorithm that does this is a good exercise. Computing the strongly connected
components is much harder. It can also be done by an algorithm based on DFS,
but this is outside the scope of this course.

10.5 Classifying vertices during a DFS

Let G be a graph. Recall that during an execution of dfs(G), the subroutine
dfsFromVertex(G, v) is invoked exactly once for each vertex v. Let us call vertex v
finished after dfsfromVertex(G,v) is completed. During the execution of dfs(G), a
vertex can be in three states:

e not yet visited (let us call a vertex in this state white),
e visited, but not yet finished (grey).
¢ finished (black).

We can modify our recursive DFS algorithm so that it keeps track of the states
of the vertices, see Algorithms 10.8 and 10.9.

The following property will be important in the next section:
Lemma 10.10. Let G = (V,E) be a graph, v € V. Consider the time during
execution of dfs(G) when dfsfromVertex(G,v) is called. Then for all vertices w we
have:

(1) If w is white and reachable from v, then w will be black before v.

(2) If w is grey, then v is reachable from w.

We will not give a formal proof here. Intuitively, (1) follows from the fact that

5

Inf2B Algorithms and Data Structures Note 10 Informatics 2B k1.3

Algorithm dfs(G)

1. Initialise array state by setting all entries to white.
2. forallveV do

3. if state[v] = white then

4 dfsFromVertex(G, v)

Algorithm 10.8

Algorithm dfsFromVertex(G, v)

1. state[v] < grey

2. for all w adjacent to v do

3. if state[w] = white then

4 dfsFromVertex(G, w)
5. state[v] < black

Algorithm 10.9

all vertices w that are reachable from v are either black before dfsFromVertex(G, v)
is started (and thus black before v) or they will be visited during the execution
of dfsFromVertex(G,v), because a DFS starting at v visits all vertices reachable
from v that have not been visited earlier. Thus they will become black while v is
still grey. (2) follows from the fact if w is still grey, dfsfromVertex(G,w) is not yet
completed. However, a DFS starting at w only visits vertices reachable from w.
Thus v must be reachable from w.

10.6 Topological Sorting

Suppose we have a list of tasks to do, some of which depend on others to be com-
pleted first. For example, a practical exercise may involve 10 tasks, numbered
0-9.

e Task O must be completed before Task 1 is started.

e Task 1 and Task 2 must be completed before Task 3 is started.

e Task 4 must be completed before Task O or Task 2 are started.

e Task 5 must be completed before Task O or Task 4 are started.

e Task 6 must be completed before Task 4, Task 5 or Task 7 are started.
e Task 7 must be completed before Task O or Task 9 are started.

e Task 8 must be completed before Task 7 or Task 9 are started.

6
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e Task 9 must be completed before Task 2 or Task 3 are started.

We can arrange this information in a more digestible form as a dependency
graph. The vertices of this directed graph are the tasks to be performed, and
there is an edge from task v to task w if v must be completed before w can be
started. Figure 10.11 shows the dependency graph of our example.

Figure 10.11.

Before carrying out the tasks we must arrange them in an order that respects
all dependencies. This is called a topological order of the dependency graph.

Definition 10.12. Let G = (V, E) be a directed graph. A topological order of G is
a total order < of the vertex set V such that for all edges (v, w) € E we have v < w.
For example, one topological order of the digraph in Figure 10.11 is

8<6<7<9<5<4<2<0=<1<3.

It is not obvious how to find a topological order of a digraph efficiently (assuming
it has one). In fact, there are many digraphs that do not have a topological order:
If there are vertices v, w such that there is both an edge from v to w and an edge
from w to v, then no topological order of the graph exists (we cannot take either
v < w nor w < v, so any ordering is not total). In general, if the graph has a
directed cycle then there is no topological order.

A directed graph that does not have a cycle is called a directed acyclic graph
(DAG). The following theorem holds for DAGs.

Theorem 10.13. A directed graph has a topological order if, and only if, it is a
DAG.

Our algorithm for finding the topological order of a DAG is based on dfs.
Consider the execution of dfs(G) on a directed graph G. We define the order <
on V by setting v < w if w becomes black before v (later finishers are smaller).

We now show that if G is a DAG, then < is a topological order of G. Assume
that G = (V, E) is a DAG. Let (v,w) € E. We have to prove that v < w, i.e., that w
becomes black before v. Consider the moment in the DFS when dfsFromVer-
tex(G,v) is called.

e If w is already black at this moment, there is nothing to prove.

e If w is white, then by Lemma 10.10(1), w will be black before v.

7
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e If w is grey, then by Lemma 10.10(2) v is reachable from w. Thus there is a
path from w to v, and together with the edge (v,w), this path forms a cycle.
But we assumed that G is acyclic, so this cannot happen.

Note that our argument gives us some additional information: If we find,
during the execution of dfsfromVertex(G,v) for some vertex v, an edge from v to
a grey vertex w, then we know that ¢ contains a cycle.

We can modify our basic DFS algorithm in order to get an algorithm for com-
puting the order < and printing the vertices in this order. If G is not a DAG,
our algorithm will simply print “G has a cycle”. Otherwise the algorithm adds all
vertices to the front of a linked list when they become black. Vertices becoming
black earlier appear later in the list, which means that the list is in order <. If
during the execution of sortfromVertex(G, v) for some vertex v, an edge from v to
a grey vertex w is found, then there must be a cycle, and the algorithm stops.

Algorithm topSort(G)
1. Initialise array state by setting all entries to white.
2. Initialise linked list L
3. forallv eV do
4. if state[v] = white then
5 sortFromVertex(G, v)
6. print all vertices in L in the order in which they appear

Algorithm 10.14

Algorithm sortFromVertex(G, v)

1. statev] < grey

2. for all w adjacent to v do

3 if state[w] = white then

4. sortFromVertex(G, w)
5. else if state[w] = grey then
6 print “G has a cycle”
7 halt
8. state[v] « black
9. L.nsertFirst(v)

Algorithm 10.15

The running time of topSort is the same as that of dfs, ©(n + m).
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Exercises

1. Give orders in which a BFS and DFS starting at vertex n may traverse the
graph displayed in Figure 10.16.

Figure 10.16.

2. Give 3 different DFS forests for the graph in Figure 10.16.
3. Let G be a graph with n vertices and m edges. Explain why O(lgm) is O(lgn).

4. The reflexive transitive closure of a directed graph G = (V, E) is the graph
G* with the same vertex set I as G and an edge from vertex v to vertex w if
there is a path (possibly of length 0) from v to w.

Describe an algorithm that computes the reflexive transitive closure G* of
a graph G in time O(n(n + m)), where n is the number of vertices and m
the number of edges of G. Represent the output G* in adjacency matrix
representation.



