
Inf2B Algorithms and Data Structures Note 9 Informatics 2B (KK1.3)

Graphs and BFS

We will devote two lectures of the Algorithms and Data Structures thread to an
introduction to graph algorithms. As with many other topics we could spend the
entire course on this area.

9.1 Directed and Undirected Graphs

A graph is a mathematical structure consisting of a set of vertices and a set of
edges connecting the vertices. Formally, we view the edges as pairs of vertices; an
edge (v, w) connects vertex v with vertex w. Formally:

• V is a set, and

• E ✓ V ⇥ V .

We write G = (V,E) to denote that G is a graph with vertex set V and edge set E. A
graph G = (V,E) is undirected if for all vertices v, w 2 V , we have (v, w) 2 E if and
only if (w, v) 2 E, that is, if all edges go both ways. This definition makes it clear
that undirected graphs are just special directed graphs. When studying undirected
graphs we often represent a complementary pair of directed edges (u, v) and (v, u)
as just one ‘undirected’ edge using some special notation. In this introduction we
will not go to this extent but state in each case if a graph is directed or undirected.
A useful convention is that in drawing diagrams of directed graphs we indicate the
direction of an edge with an arrow. In the case of undirected graphs we do not
draw pairs of directed edges (one from u to v and one from v to u) but just one edge
without an arrow1. If we want to emphasise that the edges have a direction, we say
that a graph is directed.

Note that in principle V and hence E can be infinite sets. Such graphs are
very useful in many areas (including computing) but for this introduction we will
assume always that V is finite. Since E ✓ V ⇥ V is follows that E is also finite.
Example 9.1. Figure 9.2 shows a drawing of the (directed) graph G = (V,E) with
vertex and edge sets given by:

V =
�
0, 1, 2, 3, 4, 5, 6

 

E =
�
(0, 2), (0, 4), (0, 5), (1, 0), (2, 1), (2, 5), (3, 1), (3, 6), (4, 0), (4, 5), (6, 3), (6, 5)

 
.

We state here a definition that will be needed subsequently.
Definition 9.3. Let v 2 V be a vertex in a directed graph G = (V,E).

• The in-degree in(v) of v is the number of incoming edges to v, i.e., the number
of edges of form (u, v). The set of in-edges to u is written as In(v).

• The out-degree out(v) of v is the number of outgoing edges from v, i.e., the
number of edges of form (v, u). The set of out-edges from v is written as Out(v).

1Do not confuse a diagram representing a graph with the graph itself. The graph is the abstract
mathematical structure and can be represented by many different diagrams.

1

Inf2B Algorithms and Data Structures Note 9 Informatics 2B (KK1.3)

0

2 3

654

1

Figure 9.2. A directed graph

In an undirected graph, the degree of v is the number of edges e 2 E for which
one endpoint is v. Two vertices are adjacent if they are joined by an edge. You
should also know definitions of graph theory concepts such as paths, cycles, con-
nectedness and connected components from your Maths-for-Informatics courses.
You will find them in any textbook on graph theory or discrete mathematics and
also in most books on algorithms. Graphs are a useful mathematical model for
numerous problems and structures. We give just a few examples.

Example 9.4. Airline route maps.
Vertices represent airports, and there is an edge from vertex A to vertex B if there
is a direct flight from the airport represented by A to the airport represented by B.

Example 9.5. Electrical Circuits.
Vertices represent diodes, transistors, capacitors, switches, etc., and edges repre-
sent wires connecting them.

Example 9.6. Computer Networks.
Vertices represent computers and edges represent network connections (e.g., ca-
bles) between them.

Example 9.7. The World Wide Web.
Vertices represent webpages, and edges represent hyperlinks.

Example 9.8. Flowcharts.
A flowchart illustrates the flow of control in a procedure. Essentially, a flowchart
consists of boxes (vertices) containing statements of the procedure and arrows (di-
rected edges) connecting the boxes to describe the flow of control.

Example 9.9. Molecules.
Vertices are atoms, edges are bonds between them.

The graphs in Examples 9.4, 9.7 and 9.8 are directed. The graphs in Exam-
ples 9.5, 9.6 and 9.9 are undirected.

9.2 Data structures for graphs

Let G = (V,E) be a graph with n vertices. We assume that the vertices of G are
numbered 0, . . . , n� 1 in some arbitrary manner.

2



Inf2B Algorithms and Data Structures Note 9 Informatics 2B (KK1.3)

The adjacency matrix data structure

The adjacency matrix of G is the n⇥ n matrix A = (aij)0i,jn�1 with

aij =

8
><

>:

1, if there is an edge from vertex number i

to vertex number j;

0, otherwise.

For example, the adjacency matrix for the graph in Figure 9.2 is
0

BBBBBBBB@

0 0 1 0 1 1 0
1 0 0 0 0 0 0
0 1 0 0 0 1 0
0 1 0 0 0 0 1
1 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 1 0 1 0

1

CCCCCCCCA

Note that the adjacency matrix depends on the particular numbering of the vertices.
The adjacency matrix data structure stores the adjacency matrix of the graph

as a 2-dimensional Boolean array, where TRUE represents 1 (i.e., there is an edge)
and FALSE represents 0 (i.e., there is no edge). It is worth noting here that for some
applications it is preferable to use actual numbers rather than Boolean values.
The main advantage of the adjacency matrix representation is that for all vertices v
and w we can check in constant time whether or not there is an edge from vertex v
to vertex w.

However we pay a price for this fast access. Let m be the number of edges of the
graph. Note that m can be at most n2. If m is close to n2, we call the graph dense,
and if m is much smaller than n2 we call it sparse. Storing a graph with n vertices
and m edges will usually require space at least ⌦(n + m). However, the adjacency
matrix uses space ⇥(n2), and this is much more than ⇥(n + m) for sparse graphs
(when a large fraction of entries in the adjacency matrix consists of zero). Moreover,
many algorithms have to inspect all edges of the graph at least once, and to do this
for a graph given in adjacency matrix representation, such an algorithm will have
to inspect every matrix entry at least once to make sure that it has seen all edges.
Thus it will require time ⌦(n2); we will see some important algorithms that run in
time ⇥(n+m) with an appropriate data structure.

The adjacency list data structure

The adjacency list representation of a graph G with n vertices consists of an array
vertices with n entries, one for each vertex. The entry for vertex v is a list of all
vertices w such there is an edge from v to w. We make no assumptions on the order
in which the vertices adjacent to a vertex v appear in the adjacency list, and our
algorithms should work for any order.

Figure 9.10 shows an adjacency list representation of the graph in Figure 9.2.
For sparse graphs an adjacency list is more space efficient than an adjacency

matrix. For a graph with n vertices and m edges it requires space ⇥(n +m), which
might be much less than ⇥(n2). Moreover, if a graph is given in adjacency list

3

Inf2B Algorithms and Data Structures Note 9 Informatics 2B (KK1.3)

2 4

5

5

1

0

35

50

61

0

1

2

5

6

3

4

Figure 9.10. Adjacency list representation of the graph in Figure 9.2

representation one can visit efficiently all neighbours of a vertex v; this just requires
time

⇥
�
1 + out(v)

�

and not time ⇥(n) as for the adjacency matrix representation2. Therefore, visiting
all edges of the graph only requires time ⇥(n + m) and not time ⇥(n2) as for the
adjacency matrix representation. On the other hand, finding out whether there is
an edge from vertex v to vertex w requires (in the worst case) stepping through the
whole adjacency list of v, which could have up to n entries. Thus a simple adjacency
test takes time ⇥(n) in the worst case, compared to ⇥(1) for adjacency matrices.

Extensions

We have only described the basic data structures representing graphs. Vertices
are just represented by the numbers they get in some numbering, and edges by
the numbers of their endpoints. Often, we want to store additional information.
For example, in Example 9.4 we might want to store the names of the airports
represented by the vertices, or in Example 9.7 the URLs of the webpages. To do
this, we create separate vertex objects that store the number of a vertex and an
object that contains the additional data we want to store at the vertex. In the
adjacency list representation, we include the adjacency list of a vertex in the vertex
object. Then the graph is represented by an array (possibly a dynamic array) of
vertex objects.

Similarly, we might want to store additional information on the edges of a graph;
in Example 9.4 we may want to store flight numbers. We can do this by setting up
separate edge objects which will store references to the two endpoints of an edge
and the additional information. Then in the adjacency list representations, the lists
would be lists of such edge objects.

A frequent situation is that edges of a graph carry weights, which are real num-
bers providing information such as the cost of a flight in Example 9.4 or the capac-
ity of a wire or network connection in Examples 9.5 and 9.6. Graphs whose edges
carry weights are called weighted graphs.

2It might be tempting to replace ⇥
�
1 + out(v)

�
with ⇥

�
out(v)

�
but this is wrong if out(v) = 0.

4



Inf2B Algorithms and Data Structures Note 9 Informatics 2B (KK1.3)

9.3 Traversing Graphs

Most algorithms for solving problems on graphs examine or process each vertex
and each edge of the graph in some particular order. The skeleton of such an
algorithm will be a traversal of the graph, that is, a strategy for visiting the vertices
and edges in a suitable order.

Breadth-first search (BFS) and depth-first search (DFS) are two traversals that
are particularly useful. Both start at some vertex v and then visit all vertices reach-
able from v (that is, all vertices w such that there is a path from v to w). If there are
vertices that remain unvisited, that is, if there are vertices that are not reachable
from v, then the only way they can be listed is if the search chooses a new unvis-
ited vertex v0 and visits all vertices reachable from v0. This process would have to
be repeated until all vertices are visited.

We can present the general graph searching strategy as algorithms 9.11 and 9.12.
In these algorithms we assume that we start with every vertex unmarked and we

Algorithm search(G)

1. ensure that each vertex of G is not marked

2. initialise schedule S

3. for all v 2 V do

4. if v is not marked then

5. searchFromVertex(G, v)

Algorithm 9.11

Algorithm searchFromVertex(G, v)

1. mark v

2. put v onto schedule S

3. while schedule S is not empty do

4. remove a vertex v from S

5. for all w adjacent to v do

6. if w is not marked then

7. mark w

8. put w onto schedule S

Algorithm 9.12

have some efficient way of marking it. Note that once a vertex is marked it stays
as such. The schedule S is some (efficient) data structure such that we can put
vertices on it and take them off one at a time. For BFS we use a Queue while for
DFS we use a Stack as our schedule S. As we will see, because recursive proce-
dures use an inherent stack we will be able to re-express DFS rather neatly without

5

Inf2B Algorithms and Data Structures Note 9 Informatics 2B (KK1.3)

an explicit schedule S (all the same it is there but given to us by the underlying
system for handling recursion). Algorithm 9.12 should be viewed as a general plan
which we can to amend slightly for various forms of search. Indeed, for DFS we will
change the method of marking vertices by replacing lines 1 and 7 of Algorithm 9.12
with a single new line after (what is now) line 5. This simplifies the pseudocode and
still ensures that we do not end up in a cycle visiting the same vertices repeatedly.

In our presentation we think of vertices as being in one of two states: unmarked
and marked. There is some advantage to thinking of them as being in one of three
states which we represent by colours:

• White: not yet seen.

• Grey: put on schedule.

• Black: taken off schedule.

Each vertex starts off as white then becomes grey and finally black. We can think of
these states as corresponding to “not yet investigated”, “under investigation”, “com-
pleted”. We will use the three colour scheme later on when studying an algorithm
for topological sorting of graphs.

Breadth-First Search

A BFS starting at a vertex v first visits v, then it visits all neighbours of v (i.e.,
all vertices w such that there is an edge from v to w), then all neighbours of the
neighbours that have not been visited before, then all neighbours of the neighbours
of the neighbours that have not been visited before, etc. For example, one BFS of
the graph in Figure 9.2 starting at vertex 0 would visit the vertices in the following
order:

0, 2, 5, 4, 1

It first visits 0, then the neighbours 2, 5, 4 of 0. Next are the neighbours of 2, which
are 1 and 5. Since 5 has been visited before, only 1 is added to the list. All neigh-
bours of 5, 4, and 1 have already been visited, so we have found all vertices that
are reachable from 0. Note that there are other orders in which a BFS starting at 0
could visit the vertices of the graph, because the neighbours of 0 might be visited
in a different order. If the neighbour vertices are visited in numerical order, then
the BFS from 0 would be 0, 2, 4, 5, 1. Vertices 3 and 6 are not reachable from 0, so to
visit them we must to start another BFS, say at 3.

The traversal heavily depends on the vertex we start at. If we start a BFS at
vertex 6, for example, all vertices are reachable, and the vertices are visited in one
sweep, for example:

6, 5, 3, 1, 0, 2, 4.

Other possible orders are 6, 3, 5, 1, 0, 2, 4 and 6, 5, 3, 1, 0, 4, 2 and 6, 3, 5, 1, 0, 4, 2.
In an undirected graph, however, the number of different BFS searches (or DFS

searches) that need to be made to visit all vertices is independent of the choice of
start vertices.

During a BFS we have to store vertices that have been visited so far and also
the vertices that have been completely processed (all their neighbours have been
visited). We maintain a Boolean array visited with one entry for each vertex, which

6



Inf2B Algorithms and Data Structures Note 9 Informatics 2B (KK1.3)

is set to TRUE when the vertex is visited. The vertices that have been visited, but
have not been completely processed, are stored in a Queue. This guarantees that
vertices are visited in the right order—vertices that are discovered first will be pro-
cessed first. Algorithms 9.13 and 9.14 show a BFS implementation in pseudocode.
The main algorithm bfs first initialises the visited array and the queue and then
loops through all vertices, starting a bfsFromVertex for all vertices that have not
been marked ‘visited’ in previous invocations of bfsFromVertex. The subroutine bfs-
FromVertex visits all vertices reachable from the start vertex in the way described
above. The inner loop in lines 5–8 can be implemented using an iterator over the
adjacency list of the vertex v.

Algorithm bfs(G)

1. Initialise Boolean array visited by setting all entries to FALSE

2. Initialise Queue Q

3. for all v 2 V do

4. if visited [v] = FALSE then

5. bfsFromVertex(G, v)

Algorithm 9.13

Algorithm bfsFromVertex(G, v)

1. visited [v] = TRUE

2. Q.enqueue(v)

3. while not Q.isEmpty() do

4. v  Q.dequeue()

5. for all w adjacent to v do

6. if visited [w] = FALSE then

7. visited [w] = TRUE

8. Q.enqueue(w)

Algorithm 9.14

To see the progress of bfs(G) we can put a print v statement after each visited [v] =
TRUE. In practice, BFS (or DFS) is often applied to applications such as all-pairs
shortest paths for a graph. For applications like this, the “current vertex” obtained
by BFS is used in the top-level algorithm for the particular application.

7

Inf2B Algorithms and Data Structures Note 9 Informatics 2B (KK1.3)

Exercises
1. Give an adjacency matrix and an adjacency list representation for the graph

displayed in Figure 9.15. Give orders in which a BFS starting at vertex n may

n p uts

r

qo v w x y

z

Figure 9.15.

traverse the graph.

8


