
Inf2B Algorithms and Data Structures Note 5 Informatics 2B (KK1.3)

AVL Trees

We have already seen one implementation of the Dictionary ADT that works well
in practice—hash tables. You have very probably already met binary search trees
(they are discussed below). Both of these data structures have a worst case run-
ning time of ⇥(n) for findElement, insertItem and removeItem. In this lecture
note, we study a balanced binary search tree that implements the methods find-
Element, insertItem and removeItem of Dictionary with a worst-case running time
of ⇥(lg(n)) for the methods. The balanced binary trees studied here were invented
in 1962 by G. Adelson-Velskii and E.M. Landis and are called the AVL Trees.

5.1 Binary Search Trees

A tree is binary if each of its vertices either has two children, in which case it is
called an internal vertex, or no children at all, in which case it is called a leaf or
an external vertex. We refer to the two children of an internal vertex v as the left

child and right child of v. The vertices of a search tree store items consisting of
keys and elements. It is convenient to set up the tree in such a way that only
the internal vertices store items1. The keys are taken from an ordered set (in
Java, keys must be of some Comparable type). A binary tree storing items in its
internal vertices is a binary search tree if for every vertex v, all keys stored in the
left subtree of v (rooted at the left child of v) are less than or equal to the key of v
and all keys stored in the right subtree are greater than or equal to the key of v.
(If we do not allow duplicate keys then the inequalities are strict.)

4

1

1 11

2

3 3

2

0 0 0 0 0 0

000

0

674518

21

16

24

43

24 55

Figure 5.1. A binary search tree. The keys are shown inside the vertices,
and the heights are shown next to the vertices.

Figure 5.1 shows an example of a binary search tree. In all our examples, the
keys are natural numbers, and we show only the keys of the vertices.

1This may seem like a waste of space, but when implementing a search tree we can just
represent the leaves as null references.

1

Inf2B Algorithms and Data Structures Note 5 Informatics 2B (KK1.3)

We now present the implementation of findElement() on any binary search
tree.

Algorithm findElement(k)

1. if isEmpty(T) then return NO SUCH KEY

2. else

3. u root

4. while ((u is not null) and u.key 6= k) do

5. if (k < u.key) then u u.left

6. else u u.right

7. od

8. if (u is not null) and u.key = k then return u.elt

9. else return NO SUCH KEY

Algorithm 5.2

Recall that the height of a vertex v of a tree is the maximum length over all
paths from v to a leaf of the tree, obtained by following left or right child vertices
(we count the number of vertices on a path but not the leaf). The height h = h(T)
of a tree T is the height of the root. Figure 5.1 shows the height of each vertex.

Examining Algorithm 5.1, it should be clear that, since we walk one step
further away from the root with every iteration of the loop at lines 4–7, the worst-
case running time of findElement is O(h), where h is the height of the tree. Hence
we have:
Theorem 5.3. For any binary search tree implementation of the Dictionary ADT,

findElement has asymptotic worst-case running time O(h), where h is the height of

the tree.

In fact the basic insertItem and removeItem implementations on a (not nec-
essarily balanced) binary search tree also achieve worst-case running time O(h).
The problem is that binary search trees can be completely unbalanced. In the
degenerate case, a tree storing n items can have height n, in which case it essen-
tially looks like a linked list.

In §§5.3 and 5.4 we will describe special implementations of insertItem and re-
moveItem on an AVL tree, which have the affect of keeping the height of the
AVL tree bounded by O(lg(n)), and hence guarantee that findElement, insertItem
and removeItem all run in O(lg(n)) time.

5.2 AVL trees

We now define the special balance property we maintain for an AVL tree.
Definition 5.4.

(1) A vertex of a tree is balanced if the heights of its children differ by one at
most.

2

Inf2B Algorithms and Data Structures Note 5 Informatics 2B (KK1.3)

(2) An AVL tree is a binary search tree in which all vertices are balanced.

The binary search tree in Figure 5.1 is not an AVL tree, because the vertex
with key 16 is not balanced. The tree in Figure 5.5 is an AVL tree.

6745

24

18

21

16

24

43

5510

Figure 5.5. An AVL tree.

We now come to our key result.
Theorem 5.6. The height of an AVL tree storing n items is O(lg(n)).

PROOF For h 2 N, let n(h) be the minimum number of items stored in an AVL-tree
of height h. Observe that n(1) = 1, n(2) = 2, and n(3) = 4.

Our first step is to prove, by induction on h, that for all h � 1 we have

n(h) > 2h/2 � 1. (5.1)

As the induction bases, we note that (5.1) holds for h = 1 and h = 2 because
n(1) = 1 >

p
2� 1 and n(2) = 2 > 21 � 1.

For the induction step, we suppose that h � 3 and that (5.1) holds for h � 1
and h� 2. We observe that by Defn 5.4, we have

n(h) � 1 + n(h� 1) + n(h� 2),

since one of the two subtrees must have height at least h�1 and the other height
at least h � 2. (We are also using the fact that if h1 � h2 then n(h1) � n(h2), this
is very easy to prove and you should do this.) By the inductive hypothesis, this
yields

n(h) > 1 + 2
h�1
2 � 1 + 2

h�2
2 � 1

= (2�
1
2 + 2�1) 2

h
2 � 1

> 2
h
2 � 1.

The last line follows since 2�
1
2 + 2�1

> 1. This can be seen without explicit calcu-
lations as it is equivalent to 2�

1
2 > 1/2 which is equivalent to 2

1
2 < 2 and this now

follows by squaring. This completes the proof of (5.1).
Therefore for every tree of height h storing n items we have n � n(h) > 2h/2 � 1.

Thus h/2 < lg(n + 1) and so h < 2 lg(n + 1) = O(lg(n)). This completes the proof of
the Theorem. ⇤

3

Inf2B Algorithms and Data Structures Note 5 Informatics 2B (KK1.3)

It follows from our discussion of findElement that we can find a key in an
AVL tree storing n items in time O(lg(n)) in the worst case. However, we cannot
just insert items into (or remove items from) an AVL tree in a naı̈ve fashion, as
the resulting tree may not be an AVL tree. So we need to devise appropriate
insertion and removal methods that will maintain the balance properties set out
in Definition 5.4.

5.3 Insertions

Suppose we want to insert an item (k, e) (a key-element pair) into an AVL tree.
We start with the usual insertion method for binary search trees. This method
is to search for the key k in the existing tree using the procedure in lines 1–7 of
findElement(k), and use the result of this search to find the “right” leaf location
for an item with key k. If we find k in an internal vertex, we must walk down to
the largest near-leaf in key value which is no greater than k, and then use the
appropriate neighbour leaf. In effect we ignore the fact that an occurrence of k
has been found and carry on with the search till we get to a vertex v after which
the search takes us to a leaf l (see Algorithm 5.1). The vertex v is the “largest
near-leaf.” We make a new internal vertex u to replace the leaf l and store the
item there (setting u.key = k, and u.elt = e).

The updating of u from a leaf vertex to an internal vertex (which will have
two empty child vertices, as usual) will sometimes cause the tree to become
unbalanced (no longer satisfying Definition 5.4), and in this case we will have to
repair it.

Clearly, any newly unbalanced vertex that has arisen as a result of inserting
into u must be on the path from the new vertex to the root of the tree. Let z be
the unbalanced vertex of minimum height. Then the heights of the two children
of z must differ by 2. Let y be the child of z of greater height and let x be the
child of y of greater height. If both children of y had the same height after the
insetion, then z would already have been unbalanced before the insertion, which
is impossible, because before the insertion the tree was an AVL tree. Note that
the newly added vertex might be x itself, or it might be located in the subtree
rooted at x. Let V and W be the two subtrees rooted at the children of x. Let X

be the subtree rooted at the sibling of x and let Y be the subtree rooted at the
sibling of y. Thus we are in one of the situations displayed in Figures 5.7–5.10(a).
Now we apply the operation that leads to part (b) of the respective figure. These
operations are called rotations; consideration of the figures shows why.

By applying the rotation we balance vertex z. Its descendants (i.e., the vertices
below z in the tree before rotation) remain balanced. To see this, we make the
following observations about the heights of the subtrees V,W,X, Y :

• height(V) � 1 height(W) height(V) + 1 (because x is balanced). In the
Figures, we have always assumed that W is the higher tree, but it does not
make a difference.

• max{height(V),height(W)} = height(X) (as y is balanced and height(x) >

height(X)).

4

Inf2B Algorithms and Data Structures Note 5 Informatics 2B (KK1.3)

(b)

x

y

z

x

y

z

(a)

X Y
V

W

W

Y

XV

Figure 5.7. A clockwise single rotation

(b)

x

y

zy

x

(a)

z

W
V

XY

Y

X

W

V

Figure 5.8. An anti-clockwise single rotation

• max{height(V),height(W)} = height(Y) (because height(Y) = height(y)� 2).

The rotation reduces the height of z by 1, which means that it is the same as it
was before the insertion. Thus all other vertices of the tree are also balanced.

Algorithm 5.11 overleaf summarises insertItem(k, e) for an AVL-tree. In order
to implement this algorithm efficiently, each vertex must not only store refer-
ences to its children, but also to its parent. In addition, each vertex stores the
height of its left subtree minus the height of its right subtree (this may be �1, 0,
or 1).

We now discuss TinsertItem(n), the worst-case running time of insertItem on a AVL
tree of size n. Let h denote the height of the tree. Line 1 of Algorithm 5.11 requires
time O(h), and line 2 just O(1) time. Line 3 also requires time O(h), because in
the worst case one has to traverse a path from a leaf to the root. Lines 4.-6.
only require constant time, because all that needs to be done is redirect a few
references to subtrees. By Theorem 5.3, we have h 2 O(lg(n)). Thus the overall
asymptotic running time of Algorithm 5.11 is O(lg(n)).

5

Inf2B Algorithms and Data Structures Note 5 Informatics 2B (KK1.3)

z

y

(a)

z

x

y

(b)

x

Y

W Y
V

X
W

VX

rot 1

rot 2

Figure 5.9. An anti-clockwise clockwise double rotation

y

x

z

(b)

z

y

(a)

x

XW
V

Y

Y

W

V X

rot 1

rot 2

Figure 5.10. A clockwise anti-clockwise double rotation

5.4 Removals

Removals are handled similarly to insertions. Suppose we want to remove an
item with key k from an AVL-tree. We start by using the basic removeItem
method for binary search trees. This means that we start by performing steps 1–
7 of findElement(k) hoping to arrive at some vertex t such that t.key = k. If we
achieve this, then we will delete t (and return t.elt), and replace t with the closest
(in key-value) vertex u (u is a “near-leaf” vertex as before—note that this does not
imply both u’s children are leaves, but one will be). We can find u by “walking
down” from t to the near-leaf with largest key value no greater than k. Then t

gets u’s item and u’s height drops by 1.
After this deletion and re-arrangement, any newly unbalanced vertex must

be on the path from u to the root of the tree. In fact, there can be at most one
unbalanced vertex (why?). Let z be this unbalanced vertex. Then the heights of
the two children of z must differ by 2. Let y be the child of z of greater height
and x the child of y of greater height. If both children of y have the same height,
let x be the left child of y if y is the left child of z, and let x be the right child of
y if y is the right child of z. Now we apply the appropriate rotation and obtain a
tree where z is balanced and where x, y remain balanced. However, we may have

6

Inf2B Algorithms and Data Structures Note 5 Informatics 2B (KK1.3)

Algorithm insertItem(k, e)

1. Perform lines 1.-7. of findElement()(k, e) on the tree to find the “right”
place for an item with key k (if it finds k high in the tree, walk down to
the “near-leaf” with largest key no greater than k).

2. Neighbouring leaf vertex u becomes internal vertex, u.key k, u.elt e.

3. Find the lowest unbalanced vertex z on the path from u to the root.

4. if no such vertex exists, return (tree is still balanced).

5. else

6. Let y and x be child and grandchild of z on z ! u path.

7. Apply the appropriate rotation to x, y, z.

Algorithm 5.11

reduced the height of the subtree originally located at z by one, and this may
cause the parent of z to become unbalanced. If this happens, we have to apply a
rotation to the parent and, if necessary, rotate our way up to the root. Algorithm
5.12 on the following page gives pseudocode for removeItem(k) operating on an
AVL-tree.

Algorithm removeItem(k)

1. Perform lines 1–7 of findElement(k) on the tree to get to vertex t.

2. if we find t with t.key = k,

3. then remove the item at t, set e = t.elt.

4. Let u be “near-leaf” closest to k. Move u’s item to t.

5. while u is not the root do

6. let z be the parent of u

7. if z is unbalanced then

8. do the appropriate rotation at z

9. Reset u to be the (possibly new) parent of u

10. return e

11. else return NO SUCH KEY

Algorithm 5.12

We now discuss the worst-case running-time TremoveItem(n) of our AVL imple-
mentation of removeItem. Again letting h denote the height of the tree, we recall
that line 1 requires time O(h) = O(lg(n)). Lines 2. and 3. will take O(1) time, while
line 4. will take O(h) time again. The loop in lines 5–9 is iterated at most h times.
Each iteration requires time O(1). Thus the execution of the whole loop requires

7

Inf2B Algorithms and Data Structures Note 5 Informatics 2B (KK1.3)

time O(h). Altogether, the asymptotic worst-case running time of removeItem is
O(h) = O(lg(n)).

5.5 Ordered Dictionaries

AVL trees are the first data structures for Dictionaries we have seen that imple-
ment all methods with a worst case running time of O(lg(n)). There are a few
similar tree-based dictionary implementations with the same running time. Still,
hash tables are more efficient in practice. The main advantage of AVL trees and
similar tree-based Dictionary implementations is that they support the order of
the keys quite efficiently. The OrderedDictionary ADT is an extension of the Dic-

tionary ADT by methods such as closestKeyBefore(k), which finds the closest key
less than or equal to k that is stored in the dictionary. Such methods can easily
be implemented on AVL trees with a running time of O(lg(n)), but there is no effi-
cient way of supporting them on hash tables. The same holds for so-called range

queries such as findAllElementsBetween(k1, k2), i.e., find all elements whose key
is between k1 and k2. Range queries are very important in database applications.

5.6 Reading

[GT] covers AVL trees, but [CLRS] only has details of a different balanced tree
called the Red-Black Tree.

Note there are detailed worked examples for insertItem and removeItem in the
slides to accompany this lecture note.

Exercises

1. Perform the following sequence of operations on an initially empty
AVL tree: insertItem(44), insertItem(17), insertItem(32), insertItem(78),
insertItem(50), insertItem(88), insertItem(48), insertItem(62), removeItem(32),
removeItem(88).

2. Describe a family of AVL-trees in which a single removeItem operation may
require ⇥(lg(n)) rotations.

3. Suppose we wanted to implement an extra method findByRank(r) (as de-
scribed in LN 3 for the Vector class) on the AVL tree data structure, and
we want to get O(lg(n)) time for this method also. Sketch a plan of how we
can accomplish this (while guaranteeing O(lg(n)) running time for our three
existing methods)?

4. Give a pseudo-code implementation of the range query

findAllElementsBetween(k1, k2)

on AVL-trees. What is the running time of your method? Is it possible to
implement findAllElementsBetween(k1, k2) with a running time of O(lg(n))?

8

Inf2B Algorithms and Data Structures Note 5 Informatics 2B (KK1.3)

Hint: The number of elements returned by the method has an effect on the
running time.

9

