
Inf2B Algorithms and Data Structures Note 4 Informatics 2B (KK1.3)

Hash Tables

In this lecture we introduce the Dictionary ADT and give a simple data structure
for it that is efficient in practice.

4.1 Dictionaries

A Dictionary stores key–element pairs, which are called items. In this and fu-
ture Dictionary–related notes, n will denote the number of items in a dictionary.
Dictionary allows key duplicates—several items may have the same key. A dic-
tionary provides three basic methods:

• findElement(k): If the dictionary contains an item with key k, then re-
turn the element of such an item, otherwise return the special element
NO SUCH KEY.

• insertItem(k, e): Insert an item with key k and element e.

• removeItem(k): If the dictionary contains an item with key k, then delete
such an item and return its element, otherwise return the special element
NO SUCH KEY.

Of course we must ensure that NO SUCH KEY cannot itself be an element that
can be associated with any key. An alternative approach is to turn the two
relevant methods into boolean functions so that success or otherwise is indicated
by the value returned; the element, if any, could be returned via a parameter.

A key point to observe is that Dictionary allows the insertion of more than one
element with the same key. In this scenario, removeItem(k) removes just one
item with key k and not all of them (when there is more than one such item).

An obvious data structure for Dictionary can be based on the linked list of
Lecture Note 3. If we implement such a list dictionary by inserting at the end
of the list (not keeping the items in key-sorted order), the method insertItem(k, e)
has running time ⇥(1) and the methods findElement(k) and removeItem(k) have
running time ⇥(n). In this note and future notes (Lecture Notes 5–7), we will see
data structures which achieve better worst-case running times for the Dictionary
methods. In this note we present Hash Tables.

4.2 Direct Addressing and Bucket Arrays

Suppose we are in the special case where the keys of the items to be inserted into
the Dictionary are integers in the range 0, . . . , N � 1, for some N 2 N with N > 0,
and suppose also that no two elements have the same key (this is a restricted
case of Dictionary). In this case we can implement a Dictionary by setting up
an array B of length N of the appropriate type to hold elements. The method
insertItem(k, e) simply sets B[k] e. The method findElement(k) returns B[k], and
the method removeItem(k) returns B[k] and resets B[k] to null . The running time

1

Inf2B Algorithms and Data Structures Note 4 Informatics 2B (KK1.3)

of these methods is ⇥(1). This data structure implementing the Dictionary ADT
is sometimes called a direct address table.

The problem with direct addressing is that we have to keep an array of size N
in memory, even if n, the number of items stored in the dictionary, is much
smaller than N . If this is the case, we waste a great deal of memory space.
Direct addressing is only acceptable if the number of items we expect to store
in the dictionary is somewhat close to N . If we are in this fortunate situation,
however, this simple data structure is the most efficient implementation of the
Dictionary ADT.

Another problem with the simple direct addressing implementation is that it
assumes no two items have the same key. However we can remove this restric-
tion by changing the structure of our array of length N . We say that when we try
to insert an item into a cell of the direct address table which already has an item
stored, a collision occurs. We can handle collisions by changing the model so
that we work on an array B of Lists of elements, and store all elements with key k
in the list B[k]. In this context, the lists B[i], for 0 i N � 1, are often called
buckets, and the array B is called the bucket array. To insert, find, and remove
elements, we use the methods insertFirst(), first(), and remove(p) (with p = 1) of
List. As we saw in Lecture Note 3, the methods insertFirst(), first() and remove(p)
all have a running-time of ⇥(1).

Bucket arrays are very efficient if N is not much larger than the number of
different keys appearing in the dictionary (for example, if we have at least cN
elements in the dictionary, for c > 0 some constant which is not too small). If
this is the case, not much space is wasted. Note that because findElement(k) and
removeItem(k) are defined in terms of a key k, and we only require one element
with that key to be found/removed, the first element of the list for that key
may always be taken. Therefore in this simple case, we need not even concern
ourselves with the size of the list (or bucket) for each k—the running-time is ⇥(1)

for all methods, regardless of how the elements are distributed.

4.3 Hash Tables

Usually, we are not in a situation where keys are small natural numbers. Hash
tables extend the idea of bucket arrays to arbitrary keys. Again, we set up a
bucket array B of length N , for a suitable integer N . The keys are mapped to
natural numbers in the range 0, . . . , N�1 using a hash function h that maps each
key k to a number h(k) 2 {0, . . . , N � 1}. When an item with key k arrives to be
inserted, it is inserted into the bucket B[h(k)].

Suppose for a moment that we have chosen a hash function h. It is certainly
possible that two elements with two different keys k1 and k2 end up in the same
bucket B[h(k1)] if h(k1) = h(k2). Thus we cannot just store the elements in the
buckets, but must store the full items, including their keys. In effect, we let
each bucket be a small dictionary. By choosing a good hash function (and by
making reasonable assumptions about the distribution on the key k), we hope
to avoid too many keys having the same hash value. This is important in this
new scenario of hash values, even though it did not matter when we defined
h(k) = k above. The reason that it becomes important now is because when

2

Inf2B Algorithms and Data Structures Note 4 Informatics 2B (KK1.3)

we implement findElement(k) or removeItem(k), we actually need to search the
bucket at h(k) rather than just taking any element of that bucket (not all elements
in the bucket have key k). If we have a good hash function (and if our input keys
are distributed well) the buckets will usually be small, and we can use simple list
dictionaries for the buckets. The technique of using lists to store the elements
with hash value h is sometimes called chaining in the literature.

A hash table realising the Dictionary ADT consists of a hash function h and
an array B of length N of list dictionaries. Algorithms 4.1–4.3 implement the
methods of Dictionary.

Algorithm findElement(k)

1. Compute h(k)

2. return B[h(k)].findElement(k)

Algorithm 4.1

Algorithm InsertItem(k, e)

1. Compute h(k)

2. B[h(k)].insertItem(k, e)

Algorithm 4.2

Algorithm removeItem(k)

1. Compute h(k)

2. return B[h(k)].removeItem(k)

Algorithm 4.3

The running time of the methods obviously depends on the time needed to
compute h(k) and on the running time of the corresponding methods of the list
dictionaries. Let us assume that computing h(k) requires at most Th computation
steps. (Of course Th may depend on the key, so it would be more precise to write
Th(nkey), where nkey denotes the size of the key. On the other hand, keys often
have constant size.)

Recall that the method insertItem of list dictionary has running time ⇥(1) and
the methods findElement and removeItem have a worst-case running time of
⇥(m), when m is the number of items in the dictionary. Then the worst-case
running time of InsertItem of the hash table dictionary is Th + ⇥(1). The worst-
case running time of both findElement and removeItem is Th + ⇥(m), where m
denotes the size of the bucket B[h(k)] associated with the key k. Since it could
happen that all items end up in the same bucket, in the worst case we have

3

Inf2B Algorithms and Data Structures Note 4 Informatics 2B (KK1.3)

m = n. Thus in the worst case, a hash table dictionary is no more efficient then
a list dictionary. However, by choosing an appropriate hash function h, and by
assuming that the input keys are uniformly distributed, we can avoid ending up
in the worst case in all practically relevant situations. As a matter of fact, we can
usually expect the size m of all buckets to be O(1), giving us an expected running
time of Th +⇥(1) for all methods.
Remark 4.4. Before discussing the choice of good hash functions, note two facts
relating to the basic implementation of hash tables above. First note that instead
of using list dictionaries as buckets, we could use any other implementation of
Dictionary. List dictionaries are the most efficient for small dictionaries, however,
and we expect our buckets to be small. Second, note that there are versions of
hash tables that do not use external buckets, but store all items directly in the
array. While this is a bit more space efficient, it requires sophisticated schemes
for handling collisions (usually referred to as open addressing schemes). Details
can be found in most algorithms textbooks (e.g., Chapter 11 of [CLRS], Section
2.5 of [GT], Chapter 14.3 of Sedgewick).

Another reference is the classic three volume series The Art of Computer Pro-
gramming by D.E. Knuth (Addison Wesley) which contains extensive discussions
of many of the algorithms and data structures we will see in this thread. They are
seriously challenging books. However, if you really want to cover a topic in great
detail, this is often the place to look. Section 6.4 of the third volume (entitled
Sorting and Searching) is on hashing.

4.4 Hash Functions

We want to find a hash function h that maps keys to natural numbers in a fixed
range 0, . . . , N � 1 in such a way that

(H1) h evenly distributes the keys over the whole range. That is, the total number
of keys mapped to the number j is roughly the same for all j 2 0, . . . , N .

(H2) h is easy to compute.

A common strategy is to first map arbitrary objects to integers by a function
called the hash code, and then map arbitrary integers to integers in the range
0, . . . , N � 1 by a function called the compression map:

Arbitrary
Objects

Integers {0,...,N−1}
map

hash code compression

Hash Codes

Since every object is represented as a sequence of bits in memory anyway, in
principle there is no problem: we can just consider the sequence of bits repre-
senting a key as an integer and let this integer be the hash code of the key.

In practice, though, there might be a problem, because integers on a real
computer cannot be arbitrarily large. Suppose we are working with a machine

4

Inf2B Algorithms and Data Structures Note 4 Informatics 2B (KK1.3)

where integers can be at most 32 bits long. The easiest way to assign hash
codes in this situation is to only take the leftmost (or rightmost) 32 bits of the
bit representation of the key to be the hash code. In general, this may be a
dangerous strategy, because all keys whose bit representation starts with the
same 32 bits will get the same hash code and will end up in the same bucket.
For example, if keys are strings, then all strings starting with the same few
letters will get the same hash code. Since the distribution of strings arising in
practical applications is hardly ever random, the resulting hash map will not
usually satisfy condition (H1) in practical applications.

Summation hash code

If we want to take all bits of the representation of the key into account, we could
proceed as follows: instead of considering the bit representation of the key as
one integer, we consider it as a sequence of integers, a0, . . . , a`�1. One way of
mapping this sequence to a single integer is to sum them all up. Thus if we have
a key k whose bit representation corresponds to integers a0, . . . , a`�1, we could let
the hash code of k be

a0 + a1 + · · ·+ a`�1.

We simply disregard overflows in the summation, that is, we actually let the hash
code be

P`�1
i=0 ai mod 2

32.
While this summation hash code is a quite reasonable choice, there are still

some problems with condition (H1). For example, we can recognise some “pat-
terns” in the way sequences get mapped to buckets—keys corresponding to se-
quences (a0, a1, a2), (a1, a2, a0), and (a1, a0, a2) will get the same hash code, which
may be problematic in some applications. More generally any permutation of a
sequence is given the same code.

Polynomial hash code

For the polynomial hash code, we choose a fixed integer x and let the hash code
of a key k corresponding to the sequence a0, . . . , a`�1 be

a0 + a1x+ a2x
2
+ · · · a`�1x

`�1

(again disregarding overflows). This polynomial hash code can be especially well-
suited to keys of type String. Suppose our String s = s0 . . . s`�1 is a sequence
of 7-bit characters (so each si 2 {0, 1 . . . , 127}), and suppose we want to map to
a hash value in the set {0, 1, . . . , N � 1}. Then we can perform the mapping by
choosing an appropriate integer x and evaluating (

P`�1
i=0 six

i
) mod N . It is very

important, in choosing the value of x, to make sure that x and N are coprime (i.e.,
they do not share common factors, in other words the only natural number that
divides both of them is 1). If x and N are not coprime, then small strings will
not get well distributed among the buckets of the Hash Table. As an example,
Java’s HashMap uses a polynomial hash function with x = 31, which is prime, to
hash keys of type String (for HashMap, usually N = 2

k for some integer k). The
observations here are based on practical experience rather than any theoretical
analysis.

5

Inf2B Algorithms and Data Structures Note 4 Informatics 2B (KK1.3)

Polynomial hash codes seem to satisfy (H1) (at least on an heuristic level, we
have given no proof), it it not clear that they satisfy (H2). However, polynomials
can be evaluated quite efficiently, as the following remarks show.

Aside: Evaluating Polynomials

Suppose we are given integers a0, . . . , a`�1, x and want to compute

a0 + a1x+ a2x
2
+ · · · a`�1x

`�1. (4.1)

A naı̈ve way of doing this requires ⇥(`2) arithmetic operations (additions and mul-
tiplications). However, there is a clever way of rewriting the polynomial in such a
way that it can be evaluated with only ⇥(`) arithmetic operations. Horner’s rule
says that the polynomial (4.1) is equal to

a0 + x(a1 + x(a2 + · · ·+ x(a`�2 + x · a`�1) · · ·)).

This expression clearly can be evaluated with only ⇥(`) arithmetic operations.
It is interesting to note that Horner’s rule has been proved to be optimal. Any

algorithm that can evaluate an arbitrary polynomial of degree l for arbitrary x
must use at least as many additions/subtractions and at least as many multi-
plications as Horner’s rule (we allow divisions but they do not help). This is a
rare example where we know the exact complexity of a non-trivial computational
problem.

Compression Maps

Many Hash Functions only consist of a “hash code”, and do not involve a com-
pression phase. However, depending on the domain, it may be helpful to first
perform a hash to a large key space, and then “compress” these large integers
to integers in the range 0, . . . , N � 1. Like the hash code, the compression map
should satisfy conditions (H1) and (H2). It turns out that compression functions
of the following form do this fairly well: an integer k is mapped to

|ak + b| mod N,

where a, b are just randomly chosen integers. We choose a, b at running time
whenever we create a new hash table. This method works particularly well if a
and N are coprime.

If a and N are not coprime then the map is definitely bad. Let’s assume that a,
b and k are non-negative to simplify the discussion. If we are to have a good hash
map then, at the very least, for each location r of the array there should be a key
that hashes into it, i.e., the equation

ak + b ⌘ r mod N

should have a solution (for an integer k, if k is negative we can get a positive value
by adding enough multiples of N to it). Note that we may assume 0 b N � 1

because we take the remainder after division by N so any quotient would be lost

6

Inf2B Algorithms and Data Structures Note 4 Informatics 2B (KK1.3)

anyway. Hence 0 hashes to b since a · 0+ b = b and this stays as b after taking the
remainder when divided by N . The preceding equation is the same as requiring
that the equation

ak + b = qN + r

has a solution for integers q, k. Rearranging we have

ak � qN = r � b.

So if d = gcd(a, b) divides both a and N then it divides r � b, i.e., r � b = sd for
some integer s. Hence the only possible values of r are b + sd for integers s.
We know that 0 hashes to b but then the next location to which any key might
hash is b + d. So if d > 1 then nothing hashes to b + 1, b + 2, . . . , b + d � 1. In
general, our argument shows that the only locations to which anything can hash
are all those of the form b + sd where 0 b + sd N � 1 (remember that s can
be negative as well as positive or 0). In fact we can prove (using a simple fact
deduced from the Euclidean algorithm for finding greatest common divisors1)
that all such locations do have a key hashing to them. So, unless gcd(a,N) = 1

the compression map is definitely bad. If gcd(a,N) = 1 then the map still might
be bad because the keys do not spread out evenly but this is a property of the
distribution of keys which varies with the application domain.

4.5 Load Factors and Re-hashing

The choice of a good size for N obviously depends on the number n of items we
intend to store in our hash table. We call the fraction n/N the load factor of the
hash table. We do not want the load factor to be too high, because that would
lead to many collisions. We don’t want it to be too low, because that would be
a waste of memory space. A common load factor in practice (e.g., with the JVC
HashMap) is 3/4.

If we know n, we can choose N to be a prime number of size roughly (4/3)n. As
N is prime it is automatically coprime to all a < 2N provided N 6= 2, which is the
case in any sensible application of hashing. If we do not know n in advance, or if n
changes over time because items are inserted and removed, we must occasionally
choose a new N , create a new hash table, and move all items from the old table
to the new one. This is called re-hashing. We adopt a similar strategy as the one
we used for dynamic arrays in Lecture Note 3. Whenever the load factor gets too
far above 3/4 we choose a new prime number N close to (4/3)n and create a new
bucket array of size N . We choose a new compression function and thus obtain
a new hash function that maps our keys to the new range 0, . . . , N � 1. Then we
move all items stored in the old table to the new table. We proceed similarly if
the load factor falls too far below 3/4. To do this we need to be able to find prime
numbers of a given size. There are efficient ways of doing this, but beyond the
scope of this course. A common trick in practice is to store a table containing for
7 k 31, the closest prime number to 2

k, which would easily cover all practical
applications (though with 2 rather than 4/3).

1This states that the equation au+ bv = c where a, b, c are integers has a solution for integers
u, v if and only if gcd(a, b) divides c.

7

Inf2B Algorithms and Data Structures Note 4 Informatics 2B (KK1.3)

4.6 Hashing in Java

The Dictionary ADT is similar (though not the same) to the Map ADT of the Java
Collections framework. The difference is that Map of JVC requires that the keys
should all be distinct (does not allow different elements with the same key).
One of the implementations of Map that is provided in the JVC is the HashMap
implementation, which is a Hash Table where the number of buckets N may vary
(but the default is 16). HashMap has parameters which allow the user to specify
the (initial) table size N , and the desired “load factor” (the average number of
items per bucket). This Java implementation “re-sizes” the table as the number
of items n increases (this aspect of the implementation is similar to that of the
dynamic array that we met in Lecture Note 3). Different hash functions are used,
depending on the domains of the key which is being hashed. Java also offers a
Hashtable implementation which is almost identical to Hashmap.

4.7 Further Reading

In [GT], the “Maps and Dictionaries” chapter (chapter 8 in edition 3, Chapter 9
in edition 4) has a lot of material on this topic. Sections 8.1, 8.2 and 8.3 are
directly relevant to this lecture.

In [CLRS], there is an entire chapter on “Hash Tables”.
Chapter 14 of “Algorithms in Java” (3rd Ed), by Robert Sedgewick, has a very

nice presentation of Hashing.
For information on the HashMap interface of JVC:

http://java.sun.com/j2se/1.4.2/docs/api/java/util/HashMap.html

Exercises

1. For an ASCII character c, let A(c) denote the ASCII code of c (an integer
between 0 and 127). Let f, g be hash codes for ASCII strings defined by

f(c0 . . . , cn�1) = A(c0) + . . .+ A(cn�1),

g(c0 . . . , cn�1) = A(c0) + A(c1) · 3 + . . .+ A(cn�1) · 3n�1.

Compute f and g for a few example strings and write JAVA methods com-
puting f(s) and g(s), respectively, for a given string.

2. Draw the 11–item hash table resulting from hashing keys with hash codes
12, 44, 12, 88, 23, 94, 11, 39, 20, 16, and 5 using the compression map g(i) =
(2i+ 5) mod 11.

8

