
Informatics 2A: Tutorial Sheet 5 Solutions
Shay Cohen

1. (a) For the purpose of a rough calculation, we can approximate the fre-
quency graph by the curve y = c/x for a suitable constant c. The
total number of tokens will then be∫ 10000

1

c/x dx = c[lnx]100001 = 4c ln 10 = 100000

(and this fixes the value of c). So to obtain half the total number of
tokens, we clearly want to take the 100 most common word types:∫ 100

1

c/x dx = c[lnx]1001 = 2c ln 10

(b) From the above, we have c ≈ 10857. So the frequency of about is
roughly 10857/60 ≈ 181.

2. Here’s one way to tag the text, based on the Penn Treebank tagging
guidelines:

I/PRP was/VBD walking/VBG down/IN the/DT high/JJ street/NN
yesterday/NN when/CC I/PRP noticed/VBD an/DT old/JJ
man/NN acting/VBG suspiciously/RB . He/PRP was/VBD peer-
ing/VBG into/IN various/JJ shop/NN windows/NN and/CC
writing/VBG things/NNS in/IN a/DT notebook/NN . When/WRB
he/PRP spotted/VBD me/PRP, he/PRP stuffed/VBD the/DT
notebook/NN into/IN his/PRP$ pocket/NN and/CC wandered/VBD
off/RP ./.

Here’s how the Stanford tagger tags it:

I/PRP was/VBD walking/VBG down/RP the/DT high/JJ street/NN
yesterday/NN when/WRB I/PRP noticed/VBD an/DT old/JJ
man/NN acting/VBG suspiciously/RB ./. He/PRP was/VBD
peering/VBG into/IN various/JJ shop/NN windows/NNS and/CC
writing/VBG things/NNS in/IN a/DT notebook/NN ./. When/WRB
he/PRP spotted/VBD me/PRP ,/, he/PRP stuffed/VBD the/DT
notebook/NN into/IN his/PRP$ pocket/NN and/CC wandered/VBD
off/RP ./.

You can see it sometimes makes mistakes, for example, denoting “down”
as a particle.

Here is the Penn treebank POS tagset if needed for discussion:



1. CC Coordinating conjunction
2. CD Cardinal number
3. DT Determiner
4. EX Existential there
5. FW Foreign word
6. IN Preposition or subordinating conjunction
7. JJ Adjective
8. JJR Adjective, comparative
9. JJS Adjective, superlative
10. LS List item marker
11. MD Modal
12. NN Noun, singular or mass
13. NNS Noun, plural
14. NNP Proper noun, singular
15. NNPS Proper noun, plural
16. PDT Predeterminer
17. POS Possessive ending
18. PRP Personal pronoun
19. PRP$ Possessive pronoun
20. RB Adverb
21. RBR Adverb, comparative
22. RBS Adverb, superlative
23. RP Particle
24. SYM Symbol
25. TO to
26. UH Interjection
27. VB Verb, base form
28. VBD Verb, past tense
29. VBG Verb, gerund or present participle
30. VBN Verb, past participle
31. VBP Verb, non-3rd person singular present
32. VBZ Verb, 3rd person singular present
33. WDT Wh-determiner
34. WP Wh-pronoun
35. WP$ Possessive wh-pronoun
36. WRB Wh-adverb

For most words here the tagging is straightforward, but the following
points might be discussed:

• If high street were regarded as a compound noun, the tagging would
be high/NN street/NN.

• One might very reasonably want to tag yesterday as a temporal
adverb (RB). The Penn guidelines, however, say that it should be
treated as a noun (even in contexts like the above), pointing out e.g.
that it admits a possessive form yesterday’s news.

• We have tagged the first when as a coordinating conjunction, and
the second as a Wh-adverb, though it is not entirely clear whether
this accords with Penn Treebank policy.



3. We only have to tag the words old and man, since the tagging of the other
words is fixed. Proceeding from left to right, we see that if old is preceded
by a DT, its most likely POS is Adj, while if man is preceded by Adj, its
most likely POS is N.

(This is admittedly a rather weak example, in that the tagging of man
would be the same whatever preceded it!)

4. The Viterbi matrix is as follows:
the old man the lifeboats

DT .4x.5 = .2 0 0 .00096x.4x.5 = .000192 0

N 0 .2x.6x.2 = .024 .032x.5x.3 = .0048 0 etc.

V 0 0 .024x.4x.1 = .00096 0 0

Adj 0 .2x.4x.4 = .032 0 0 0

Thus the most probable tagging is:

The/DT old/N man/V the/DT lifeboats/N

(The backtrace pointers can be read off from the above matrix in an ad
hoc fashion: e.g. in the cell for (man,N), the first factor is .032 which
comes from the cell for (the,Adj).)

5. The following transducer does the job. A label a : b means a transition
can occur with input a and output b; we write just a as a shorthand for
a : a (so that e,i means e:e and i:i). Intuitively, this machine ‘buffers’
every occurrence of e until it knows whether this e should be output or
suppressed. Notice that in the transition e:e, the output e should be
thought of as the one before the currently input e.

We write ‘?’ to mean ‘any letter except e’. For typesetting reasons, we
have written ‘–’ in place of ε.

#, ?

0 2
#,?

1

e:e

e,i

3s
s:e

^:−

e:− ^:−

−:s

4s	
s	:	e	-:s	

The states 3s and 4s illustrate two possible approaches to solving the same
problem: given any input letter X, output e followed by X. However, in
the context of the whole machine, they play different roles, since they deal
with occurrences of e at the end and in the middle of a stem respectively.

In state 3s, we display the transitions for the case X=s: we output e and
move to a new state which ‘remembers’ the letter s. Here we have used s as



a sample letter distinct from i and e; the machine should actually contain
a state like this (with similar transitions in and out) for every such letter.

In state 4s, we take care of an e that appears in the middle of a stem.
When we see the next input letter, we output the e that we buffered,
followed by that letter.


