
Informatics 2A: Tutorial Sheet 4 - SOLUTIONS
Mary Cryan

1. A possible LL(1) grammar is as below (note the distinction between ε and
ε!). It’s wise to also talk to them about the similarity between this and
what we did to get an LL(1) grammar for the arithmetic expressions:

RegExp → RegExp1 PlusOps

PlusOps → ε | + RegExp1 PlusOps

RegExp1 → RegExp2 ConcatOps

ConcatOps → ε | RegExp2 ConcatOps

RegExp2 → RegExp3 StarOps

StarOps → ε | ∗ StarOps

RegExp3 → Atom | (RegExp)

Atom → sym | ∅ | ε

For the sake of completeness, the parse table for this is:

sym/∅/ε + ∗ () $

RegExp RegExp1 PlusOps RegExp1 PlusOps
PlusOps +RegExp1 PlusOps ε ε
RegExp1 RegExp2 ConcatOps RegExp2 ConcatOps

ConcatOps RegExp2 ConcatOps ε RegExp2 ConcatOps ε ε
RegExp2 RegExp3 StarOps RegExp3 StarOps
StarOps ε ε ∗ StarOps ε ε ε
RegExp3 Atom (RegExp)

Atom sym/∅/ε

2. (a) The parse tree is:

Type

Type0

Integer

TypeRest

-> Type

Type0

Bool

TypeRest

-> Type

Type0

Integer

TypeRest

ε

(b) By abstract syntax tree we mean the intended parse tree of the ab-
stract syntax grammar. In this case it is the parse tree that implictly
brackets the type as

Integer -> (Bool -> Integer)

which is the correct bracketing by the Haskell convention that the ->

operation associates to the right. The required tree is:

Type

Type

Integer

-> Type

Type

Bool

-> Type

Integer

(c)

Exp → Exp1 ExpOps

Exp1 → n | (Exp)

ExpOps → ε | + Exp | − Exp

(d) The parse tree is:

Exp

Exp1

n(10)

ExpOps

- Exp

Exp1

n(5)

ExpOps

- Exp

Exp1

n(4)

ExpOps

ε

(At the numeral leaves, the labels on the parse tree are strictly speak-
ing just n, but it’s informative to display the actual lexical tokens in
question.)

(e) This time, standard conventions require the abstract syntax tree that
implictly brackets the expression as

(10− 5)− 4

This leads to the abstract syntax tree below.

Exp

Exp

Exp

10

- Exp

5

- Exp

4

(f) The difference is that structurally similar concrete parse trees are
dealt with in different ways in the translation to abstract syntax tree.
The concrete syntax does not distinguish between right-associativity
and left-associativity of binary operations. Rather, irrespective of the
associativity properties of the operations, expressions are concretely
parsed as a list of top-level operations. The right-associativity of ->
is catered for by translating concrete parse trees to abstract syntax
trees in one way. The left-associativity of + and − is handled by
translating in a different way.

The main point to take away from this is: when using LL(1) parse
technology, the choice of whether to implement infix operations as
left-associative or right-associative is made in the translation from
concrete syntax to abstract syntax, it is not made in the formulation
of the grammar for the concrete syntax.

3. This question is really to get the students to think about what they have
learned in the “Fixing Grammars” lecture. The actual “work” they need
to do to answer this is very minor.

They will remember the algorithm of Lecture 13 which takes a CFG and
converts it to Chomsky Normal Form. This has 4 steps: (i) removing
ε-productions, (ii) removing unit-productions X → Y where Y is non-
terminal, (iii) removing terminal symbols from “mixed” right-hand sides
of production rules (by adding dummy non-terminals) and (iv) breaking
up long (at least three) right-hand sides by introducing more dummy non-
terminals.

We only need to carry out the first two of these steps in order to get
an equivalent CFG for G which is cycle-free (see those steps on slide 14
of lecture 13 if you want to discuss more about it). Also, if the original

grammar generated the empty string, we add an extra non-terminal Ŝ
which becomes the new start non-terminal, and two extra production rules

Ŝ → ε | S.

Note that after having carried out step (i) of CNF, we are assured that
every right-hand side of every terminal is non-empty, and for each non-
terminal X in N , there is no derivation X ⇒∗ ε (we make a note of
whether S could derive the empty string, and will correct for this at the
end). However, after (i) we may still have productions which have a single
non-terminal on the right-hand side, and these may give rise to “cycles”
as defined in the question.

Step (ii) of CNF conversion eliminates all unit production rules with a
non-terminal on the right-hand side, resulting in a grammar where every
production rule is either X → a for a single non-terminal, or alternatively
is X → x1 . . . xk for k ≥ 2. Since the non-terminals no-longer can generate
an empty string, this “at least two symbols” constraint on the right-hand-
side means we can never generate X ⇒+ X by introducing initial non-
terminals and then “vanishing” them.

The adjustment given above for the case where ε ∈ L(G) does not induce
a cycle (since we use a dummy start non-terminal for this).

