
Informatics 2A: Tutorial Sheet 3 - SOLUTIONS
Mary Cryan

1. Suppose a ∈ Σ.

(a) The string aaa can be derived in two ways with the following syntax
trees.

a

aa

RegExp

RegExp RegExp

RegExp RegExp

a
a

a

RegExp

RegExpRegExp

RegExp RegExp

(note I have written a instead of sym in this case, taking a small bit
of notational leniency).

This ambiguity is harmless since both trees define the language {aaa}.
(b) The string aa∗ can also be derived in two ways, as shown below:

a

a

RegExp
RegExp

RegExp

*RegExp

aa

RegExp

*RegExp

RegExp RegExp

(again I have taken the notational leniency of directly writing a).
This ambiguity is harmful since one parse tree defines the regular
language {an | n ≥ 1} and the other defines {a2n | n ≥ 0}. Note
that the first parsing is the one that respects the usual precedence
conventions.

2. (a) The idea is that we jump to the second state once the b’s start
coming. Formally, the control states are Q = {qa, qb}, the stack
alphabet is Γ = {⊥}, and we include the following transitions:

qa
$,⊥ : ε−−−−→ qa

qa
a,⊥ :⊥⊥−−−−−→ qa

qa
b,⊥ : ε−−−−→ qb

qb
b,⊥ : ε−−−−→ qb

qb
$,⊥ : ε−−−−→ qb

(N.B., the $ symbol can only ever occur at the end of the input
string.)

Strictly speaking, we should also add a garbage state as the destina-
tion for all remaining transitions. The self transitions on the garbage
state need to ensure that the stack never empties at the end-of-input
marker $. This can be implemented by including a self-transition
$,⊥ : ⊥ on the garbage state.

(b) Let Γ = {(, [,⊥}. Consider a single state with the following self-
transitions.

(, x : (x for each x ∈ Γ
[, x : [x for each x ∈ Γ
), (: ε
], [: ε
$,⊥ : ε

Again, strictly speaking, one should add a garbage state as destina-
tion for all remaining transitions.

3. (a)

Operation Input remaining Stack state
(n * n)$ Exp

Lookup (,Exp (n * n)$ (Exp)
Match (n * n)$ Exp)
Lookup n, Exp n * n)$ n Ops)
Match n * n)$ Ops)
Lookup *, Ops * n)$ * n Ops)
Match * n)$ n Ops)
Match n)$ Ops)
Lookup), Ops)$)
Match) $ STACK EMPTIES

AT END OF STRING:
SUCCESS!

(b) • For (), the parser will encounter a blank table entry at), Exp.
Message: “) Found where expression expected.”

• For n), the stack will empty before end of input is reached.
Message: “) Found after end of expression.”

• For n*, the end of input will be reached with n Ops still on the
stack, and the parser gets stuck since the top of the stack is a
terminal n no different from $.
Message: “End of input found where numeric literal expected.”

(c)

Exp → ExpAOps

Ops → ε | ∗ ExpA Ops

ExpA → n | (Exp)

(Other solutions are possible.)

4. (a) E = {OptMinus, TimesOps, PlusOps}
(b) First(OptMinus) = {−, ε}

First(TimesOps) = {∗, ε}
First(PlusOps) = {+, ε}
First(Exp) = First(Cond) = First(TimesExp) = {−,n}

(c) Follow(Cond) = {$}
Follow(Exp) = {$, ==}
Follow(PlusOps) = {$, ==}
Follow(TimesExp) = {$, ==, +}
Follow(TimesOps) = {$, ==, +}
Follow(OptMinus) = {n}

(d) The grammar is indeed LL(1)!
Parse table as follows.

n + * - == $

Cond Exp==Exp Exp==Exp

Exp TimesExp
PlusOps

TimesExp
PlusOps

TimesExp OptMinus n
TimesOps

OptMinus n
TimesOps

OptMinus ε -

TimesOps ε * n TimesOps ε ε

PlusOps + TimesExp
PlusOps

ε ε

