
Informatics 2A: Tutorial Sheet 2 - SOLUTIONS
Mary Cryan

1. (a) Let D (for decimal digits) be the language:

0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9.

The required regular expression is then:

D∗(D .+ . D)D∗(ε+ ((E + e)(ε+ ‘+’ + ‘−’)D D∗))

(many variations are possible). Note that in the above, the . is
representing the point that gets written between the whole-part of
the number and the trailing digits - it’s not an operator, it is part of
the resultant expression.

(b) For egrep, we have to take the alternative notation into consideration.
For example ’.’ indicates “any single character” in an egrep pattern,
so to describe the decimal point we need to write \. instead. Also,
to take the union of two patterns, we use | not +. And finally, for
unions of characters we can use square brackets (eg [eE] indicates
either of e or E). The egrep command provided by John Longley (last
year’s lecturer) is egrep pattern foo.java, where pattern is:

"[0-9]*(([0-9]\.)|(\.[0-9]))[0-9]*([Ee][+-]?[0-9]+)?"

Or alternatively the following pattern (my own solution) will work

"([0-9]+\.|[0-9]*\.[0-9]+)(([Ee][-+]?[0-9]+)?)"

It will take quite a bit of hacking to get this right, and it is helpful
to be logged-in to DICE (or any Linux environment) so you can test
against the tutorial sheet .tex file (the strings that should be returned
have commented-lines saying that, and it’s reassuring to see those as
you tweak things).

In many versions of the machine syntax, [0-9] can be abbreviated
e.g. to [\d] or :digits:, however \d also matches a collection of
decimal digits in other languages.

(c) An example can be seen with the strings 7. and 7.e5, These are
both accepted (or should be), but 7.e should not. The maximum
number of consecutive non-accepting states between accepting states
is two, as seen with the string 7.e-5. (This has implications for
longest-match lexing: we cannot simply stop as soon as we pass from
an accepting state to a non-accepting one, as we might enter an
accepting state again later.)

2. (a) Let S be the language of string characters, i.e. all input characters
except "(double quote) and \(backslash).
Then the required regular expression is:

" (S + \ (" + \+ b + t + n + f + r))∗ "

(b) Translating this into machine syntax with suitable escapes for " and
\, John Longley’s solution is:

egrep "\"([^\"\\]|([\\][\"\\btnfr]))*\"" foo.java

Note that there are two levels of escape sequences involved in the
pattern above where we want to replace the special \ options after
excluding free choice of the \ and " characters. It’s actually quite
difficult to get the details of exclusions and re-introductions exactly
right (having to use \\ to just replace a single \ inside a string.
In my own workings (before checking John’s solution) I had trouble
combining the \ and " inside the square brackets (especially with
extra things) and for me it’s clearer (and more reassuring) to rewrite
John’s solution as

egrep "\"([^\"\\]|([\\]([\"]|[\\]|[btnfr])))*\"" foo.java

I like this because it separates the \\ and \" away from the individual
characters b, t etc (recombining with the | which does union.

(c) A possible egrep command to achieve this is:

egrep "^[^\"]*\"[^\"]*(\"[^\"]*\"[^\"]*)*$" foo.java

Note that ^ and $ match the start and end of line respectively. This
use of ^ is different to when it’s used inside a square bracket with
a set of characters (there it indicates the complement of that set of
characters).

This is a tricky pattern to decipher (or to come up with) but it actu-
ally relates to the example r.ex. from Lecture 7 where we were check-
ing different ways of specifying binary strings with an even number
of 0s. But in this case it’s odd not even, and it’s " not 0, that we are
trying to specify.

3. In each of (a)-(d) below, let L denote the language in question.

(a) Not regular.
Given k ≥ 0, consider x = ε, y = ak, z = bak.
We have xyz ∈ L and the number of states of y is greater than k, so
we are required to test it against the pumping lemma parameters.
Given any splitting of y as uvw where v 6= ε (this is not our choice,
the adversary can split y however it wants), we take i = 0 (this is
our choice, we can consider any i we want).
Then uviw = uw = al for some l < k, so xuviwz = albak 6∈ L.

(b) Not regular.
Given k ≥ 0, let x = akb, y = ak, z = b, so that xyz ∈ L, and since y
is longer than k, we must test it against the pumping lemma.
Given any splitting of y as uvw with v 6= ε, we may take i = 2 (just
for a change).
Then xuviwz = akbalb for some l > k, whence xuviwz 6∈ L.

(c) Regular. The trick is to note that the strings of L are exactly those
that switch between a’s and b’s an even number of times, i.e. those
that start and end with the same letter. This is because we get an ab

every time we switch from a’s to b’s, and a ba every time we switch
from b’s to a’s.
So L corresponds to the following regular expression:

ε + a + b + a(a+b)∗a + b(a+b)∗b .

(d) Not regular.
Given k ≥ 0, let p ≥ k be prime (there must be such a p, using
Euclid’s theorem that there are infinitely many prime numbers).
Consider x = ε, y = ap, z = ε. Then xyz = ap ∈ L.
Given any splitting of y as uvw where v 6= ε, take i = p+ 1.
Note that |xuwz| = p − |v| and |vi| = (p + 1)|v|, so |xuviwz| =
p− |v|+ (p+ 1)|v| = p(|v|+ 1), which is not prime since both factors
(p and |v|+ 1) are ≥ 2. Thus xuviwz 6∈ L.

Note that as i varies, the possible lengths of the string xuviwz form
an arithmetic progression. In the above, we are essentially exploiting
the idea that there are no infinite arithmetic progressions of prime
numbers.

As a side remark: the Green-Tao Theorem (2004), a celebrated re-
sult in number theory, states that, even though the prime numbers
do not contain any infinite arithmetic progressions, they do contain
arbitrarily long ones. So one can’t place any fixed upper bound on
the i needed in the above proof in advance.

