
Informatics 2A 2018–19.

Tutorial Sheet 1 - SOLUTIONS

Mary Cryan

1. Three subsets of {p, q, r} suffice:

The best way to produce this is to start with the DFA start state {p},
and then explore the result of applying a and b transitions to states so far
constructed, until no new DFA states (i.e. subsets of {p, q, r}) arise.

2. The NFAs given here are the ’simplest possible’ – however, many other
choices of regular expresssions would be equally reasonable.

(a) NFA:

Regular Expression: (a+ ε)(ba)∗(b+ ε)

(b) NFA:

Regular Expression: (a+ b)∗(aa+ bb)(a+ b)∗

(c) NFA:



Regular Expression: (a+ b)∗abba(a+ b)∗

(d) NFA:

Regular Expresssion: Z(ε+ a(ZbZa)∗)Z, where Z = (b+ c)∗

(e)

Actually would accept the same language, but I
wouldn’t regard it as following the structure of the regular express-
sion.

(f)

(g)

or



[Note that ε is the only string accepted.]

3. The minimized DFA is:

Please obtain this using the algorithm presented in Lecture 5. I have
suggested inserting the separating strings discovered by the algorithm into
the chart, rather than just ticks. In this case, the resulting chart will look
like this:

q0
q1 ab
q2 b b
q3 b b .
q4 b b . .
q5 ε ε ε ε ε
q6 ε ε ε ε ε .

q0 q1 q2 q3 q4 q5 q6

Notice that the ε entries get added in ‘Round 0’ of the algorithm, the b
entries in Round 1, and the ab entry in Round 2, when we detect a pair
which goes under a to a pair that already has a b entry.

As an aside, the minimal DFA can also be obtained in an ad hoc way by
observing the following.

• States q5 and q6 may be collapsed, since any string takes us from
either of these to an accepting state.

• States q2,q3 and q4 may all be collapsed, since the strings that takes
us from these to an accepting state are those matching a∗b(a+ b)∗.

• Any other pair of states are differentiated by their behaviour on at
least one of the strings: a, ε, b, ab.

4. (a) Different: 01 is in L((0 + 1)∗)
but not L(0∗ + 1∗).

(b) The same: by the third identity with a = 1, b = 20,

(120)∗1 = 1(201)∗

where 0(120)∗12 = 01(201)∗2

(c) Different: 0 is in L((0∗1∗)∗) but not L((0∗1)∗).

(d) The same: (01 + 0)∗0
= (0(1 + ε))∗0 by second identity and ’aε = a’.
= 0((1 + ε)0)∗ by third identity.
= 0(10 + 0)∗ by first identity and ’εa = a’.



5. (a) The required language is Xp, where

Xp = aXp + bXq (1)

Xq = (a+ b)Xq + ε (2)

Solving these:

Xq = (a+ b)∗ from (2) by Arden’s rule
Xp = aXp + b(a+ b)∗ substituting in (1)
Xp = a∗b(a+ b)∗ by Arden’s rule.

(b) The required language is Xp, where

Xp = bXp + aXq + ε (3)

Xq = bXp + aXr (4)

Xr = (a+ b)Xq (5)

Solving these:

Xq = bXp + a(a+ b)Xq substituting (3) in (2)
Xq = (a(a+ b))∗bXp by Arden’s rule
Xp = bXp + a(a(a+ b))∗bXp + ε substituting in (1)

= (b+ a(a(a+ b))∗b)Xp + ε by distributivity law
= (b+ a(a(a+ b))∗b)∗ by Arden’s rule.

6. (a) The DFA has 21 states in all (I won’t draw it here). There are
16 states corresponding to all possible scorelines x/y where x, y ∈
{0, 15, 30, 40}. (Except that the state for 40/40 is known as Deuce.)
The start state is 0/0. The transitions between the above states are
as expected, e.g. from 15/30 there is an f -transition to 30/30 and an
m-transition to 15/40.

There is also state ‘Advantage Federer’ with an f -transition from
Deuce and an m-transition to Deuce. There is a state ‘Game Federer’
with f -transitions from the states 40/0, 40/15, 40/30 and Advantage
Federer. Similarly on Murray’s side, except that ‘Game Murray’ is
designated as an accepting state.

Finally, there should also be a ‘garbage state’ which we enter (and
stay in) if input symbols continue after a game has been completed.

(b) This DFA is not minimal. The main thing to note is that the states
40/30 and Advantage Federer can be identified: from either of these
states, f would take us to Game Federer and m would take us to
Deuce. Likewise, 30/40 and Advantage Murray can be identified.

Less interestingly, we can identify Game Federer with the garbage
state (but this is just a consequence of our biased decision only to
accept wins by Murray).

(c) Yes, an entire tennis match can indeed be modelled using a DFA.

One can build such a DFA in a hierarchical way. First, we can model
a set as a sequence of games (say F for Game Federer, M for Game
Murray), and build a DFA over {F,M} to process complete sets. We



then refine this by replacing each state along with its F and M tran-
sitions by (essentially) a complete copy of the DFA constructed in
(a), or by a suitably adapted version of this if a tiebreak is required.
This gives a DFA that processes complete sets at the level of individ-
ual points. Repeating the process, we now build a DFA that models
a complete match at the level of sets, and then insert lots of copies
of the DFA for a single set to obtain a DFA for a complete match at
the level of points.


