
Inf2a: Lab 2

Object-Oriented Programming and NLTK

1 Object-Oriented Programming

A class is defined using the keyword class, followed by the class name. The
class body must be indented, and the first statement can be a documentation
string.

A method is a function that “belongs to” a class. Methods must have, as their
first parameter, the variable self, that contains the reference to the object itself
(for example def greet(self, name): It is equivalent to the variable this in
Java, with the difference that you need to define it explicitly.

By default, all methods and attributes in Python are public. It is possible to
make them ’pseudo’ private, adding two underlines before their name (for ex-
ample as in __func(self)).

? Type the lines introduced by >>> and by ...

Remember that indentation matters in Python, which means that in the follow-
ing example, you cannot simply hit <Enter> on the third line; you will need to
type the appropriate number of spaces/tab first.

>>> class MyClass:

... """A very simple class"""

...

... def greet(self, name):

... return "Hello, " + name

...

A class is instantiated into an object, and methods of the object are called like
in Java.

? Type the lines introduced by >>> and by ...

>>> c = MyClass()

>>> c.greet("Paolo")

Classes can have an initialisation method __init__() similar to the class con-
structor in Java. This method is called when the class is instantiated and can
have a set of parameters. In contrast with Java, that can have many different

1

constructors, there can be a only one such methods per class.

? Type:

>>> class Greeter:

... """A simple class"""

... def __init__ (self, greeting):

... self.greeting = greeting

... def greet(self, name):

... return self.greeting + ", " + name

...

>>> c2 = Greeter("hi")

>>> c2.greet("tim")

A class can derive from another class:

? Type:

>>> class GreeterEx(Greeter):

... """A derived class"""

... def bye(self):

... return "Bye Bye"

...

>>> c3 = GreeterEx("hello")

>>> c3.greet("mr smith")

>>> c3.bye()

This class will contain the methods defined in Greeter, plus the new bye()

method.

2 Passing Parameters

It is possible to pass parameters to a script.

? Create in your editor a file named test.py

? Type in the editor:

import sys

for arg in sys.argv:

print arg

? Save the file

? Type in the shell:

python test.py these are the arguments

The arguments are stored in the variable sys.argv, that is a list of string.
sys.argv[0] contains the name of the script, while the following elements con-
tains the arguments.

2

3 Natural Language Toolkit (NLTK)

NLTK is a suite of Python libraries and programs for symbolic and statistical
natural language processing. It has extensive documentation, including tutorials
that explain the concepts underlying the language processing tasks supported
by the toolkit (http://nltk.org/).

? Open a terminal window, and go to the folder “MyPython” that you created
during Lab 1.

? Launch the python shell using the command python.

To load the NLTK libraries we use the import statement.

? Type:

>>> from nltk.tokenize import simple

A description of a class is available using the help function.

? Type:

>>> help(simple)

Type q to finish the help mode. You can check the documentation of the NLTK
API to see all available modules and classes in:

http://nltk.org/api/nltk.html

4 Tokens

For most kinds of linguistic processing, we need to identify and categorise the
words of the text. This turns out to be a non-trivial task. Here, we introduce
tokens as the building blocks of text, and show how texts can be tokenized.

? Type:

>>> from nltk.tokenize import WhitespaceTokenizer

>>> text = 'Hello world! This is a test string.'

>>> WhitespaceTokenizer().tokenize(text)

As you can see, tokenization based on whitespace alone is not sufficient. The
method tokenize.regexp uses a regular expression to determine how text
should be split up. This regular expression specifies the characters that can
be included in a valid word.

? Type:

>>> from nltk.tokenize import RegexpTokenizer

>>> text = "Hello. Isn\'t this fun?"

>>> pattern = r'\w+|[^\w\s]+'

>>> tokenizer = RegexpTokenizer(pattern)

>>> tokenizer.tokenize(text)

3

The statement:

|r'\w+|[^\w\s]+'

creates a regular expression which accepts sequences formed by “word” charac-
ters, i.e., characters other than whitespace or punctuation (the subexpression
\w+) or by characters which are neither word characters nor whitespace charac-
ters ([^\w\s]+, the sign ^ means complement). The previous regular expression
is not good enough with the string $22.40 and 44.50%, where we might want to
keep the symbol $ and % attached to the number.

? Type:

>>> text = 'That poster costs $22.40.'

>>> tokenizer.tokenize(text)

The union of the previous regular expression with this one: \$\d+\.\d, where
\d represents a decimal digit, solves the first problem.

? Type:

>>> pattern = r'\w+|\$\d+\.\d+|[^\w\s]+'

>>> tokenizer = RegexpTokenizer(pattern)

>>> tokenizer.tokenize(text)

A note on the union operator (|):

A|B, where A and B are both regular expressions, creates a regular expression
that will match either A or B. An arbitrary number of regular expressions can
be separated by the ’|’ in this way. As the target string is scanned, regular
expressions separated by ’|’ are tried from left to right. When one pattern com-
pletely matches, that branch is accepted. This means that once A matches, B
will not be tested further, even if it would produce a longer overall match. In
other words, the ’|’ operator is never greedy. To match a literal ’|’, escape it
using \, or enclose it inside a character class, as in [|].

For more information about how to create regular expressions check:

http://http://docs.python.org/2/library/re.html#re-syntax.

5 Corpora

NLTK is distributed with several corpora. They can be accessed using the
corpus package.

First we import the Brown Corpus, the first million word, part-of-speech tagged
electronic corpus of English. Each of the sections a through r represents a dif-
ferent genre. List of available sections can be accessed using the items and
documents variables.

4

? Type:

>>> from nltk.corpus import brown

>>> brown.categories()

>>> brown.fileids()

>>> help(brown)

With the method sents we can access tokenized sentences of a corpus text and
count the number of them.

? Type:

>>> count=0

>>> for sntc in brown.sents('cn01'):

... print sntc

... count += 1

...

>>> print count

The first argument of the sents method is the fileid of the corpus. Try the
example with ’ca02’.

In order to extract a specific sentence, we can use the index.

? Type:

>>> print brown.sents('cn01')[0]

With the tagged_sents method we can access the tagged text of a corpus.
Every word in the sentence is tagged and the sentence is presented as a list of
binary tuples containing the word and its tag.

? Type:

>>> print brown.tagged_sents('cn01')[0]

Since the structures accessed through corpus are basic Python structures, we
can use them to do some analysis on a corpus. For instance, we can count the
number of times each part-of-speech tag occurs in the Brown corpus.

? Type:

>>> dict = {}

>>> for fileid in brown.fileids():

... for sntc in brown.tagged_sents(fileid):

... for word,tag in sntc:

... if tag in dict:

... dict[tag]+= 1

... else:

... dict[tag]=0

...

5

>>> for tag,count in dict.items():

... print tag," ",count

...

We can use a ConditionalFreqDist to find the most frequent occurrence of a
word in a context, for instance the previous word. First, we pass each token of
the corpus together with its previous token to the ConditionalFreqDist class.
We call this process training.

? Type:

>>> from nltk.probability import ConditionalFreqDist

>>> cfdist = ConditionalFreqDist()

>>> prev=None

>>> for fileid in brown.fileids():

... for sntc in brown.sents(fileid):

... for token in sntc:

... cfdist[prev][token] += 1

... prev=token

...

Notice that the first token of the corpus has no “previous word”. For this ex-
ample, use None as the context for the first token.

We can see the words which follow another word using the samples() method.

? Type:

>>> cfdist['living']

Try this with a different word of your own choice.

We can use the information stored in ConditionalFreqDist to create a text
generator using the most frequent word given a word. The following code cre-
ates a sentence of word length 20 starting with ’an’. The most frequent word is
given by max().

Please note that this will generate strings which may not be well-formed sen-
tences.

? Type:

>>> word = 'an'

>>> for i in range(20):

... print word,

... word = cfdist[word].max()

...

Try this with a different word.

6

6 Grammars

The grammar module defines a set of classes that can be used to define context
free grammars:

• The grammar.Nonterminal class is used to represent nonterminals.

• The grammar.Production class is used to represent (CFG) productions.

• The grammar.ContextFreeGrammar class is used to represent CFGs.

Nonterminal is a simple class that is used to let NLTK distinguish terminals
from nonterminals.

? Type:

>>> from nltk import grammar as cfg

>>> S = cfg.Nonterminal('S')

>>> S

>>> NP = cfg.Nonterminal('NP')

>>> NP

>>> VP, Adj, V, N = cfg.nonterminals('VP, Adj, V, N')

>>> VP, Adj, V, N

Each Production specifies that a nonterminal (the left-hand side of a rule) can
be expanded to the sequence of terminals and nonterminals given in the right-
hand side of the rule.

? Type:

>>> prod1 = cfg.Production(S, [NP, VP])

>>> prod1

>>> prod2 = cfg.Production(NP, ['the', Adj, N])

>>> prod2

Context free grammars are encoded by the CFG class. A CFG consists of a spe-
cial start nonterminal, and an ordered list of productions.

? Type:

>>> grammar = cfg.CFG(S,[prod1,prod2])

>>> grammar

>>> grammar.start()

>>> grammar.productions()

Additionally, with the fromstring function of the CFG class, it is possible to
create a grammar from its text description.

7

? Type:

>>> from nltk import CFG

>>> grammar2 = CFG.fromstring('''

... S -> NP VP

... NP -> "I" | "John" | "Mary" | "Bob" | Det N

... VP -> V NP | V NP PP

... V -> "saw" | "ate"

... Det -> "a" | "an" | "the" | "my"

... N -> "dog" | "telescope" | "apple"

... PP -> P NP

... P -> "on" | "with"

... ''')

>>> grammar2

>>> grammar2.start()

>>> grammar2.productions()

For a grammar, we can parse a sentence and get its syntactic tree using the
RecursiveDescentParser() function.

? Type:

>>> from nltk import parse

>>> from nltk.tokenize import WhitespaceTokenizer

>>> from nltk.parse import RecursiveDescentParser

>>> sntc1 = WhitespaceTokenizer().tokenize('I saw Mary')

>>> sntc2 = WhitespaceTokenizer().tokenize('John ate my apple')

>>> rd_parser = RecursiveDescentParser(grammar2)

>>> for p in rd_parser.parse(sntc1):

... print p

>>> for p in rd_parser.parse(sntc2):

... print p

7 Treebank

NLTK also includes a 10% fragment of the Wall Street Journal section of
the Penn Treebank. Each sentence of the corpus is available in three forms;
(1) as tokenized text, (2) as tokens labelled with part of speech, and (3) as
parse trees. These can be accessed using treebank.raw() for the raw text,
treebank.tagged() for the tagged text, and treebank.parsed() for the parse
trees.

? Type:

>>> from nltk.corpus import treebank

>>> help(treebank)

8

>>> print treebank.raw('wsj_0001.mrg')

>>> print treebank.words('wsj_0001.mrg')

>>> print treebank.tagged_words('wsj_0001.mrg')

>>> print treebank.parsed_sents('wsj_0001.mrg')[0]

The argument in the above three functions, ’wsj_0001’, is a section of the tree-
bank. We can see the list of all sections using treebank.items. The function
treebank.parsed()[] returns an object of class nltk.Tree. We can analyse
the tree using different functions available in this class.

? Type:

>>> t = treebank.parsed_sents('wsj_0001.mrg')[0]

>>> t.label()

>>> t.leaves()

>>> print t

>>> len(t)

>>> t[0]

>>> t[0].label()

>>> len(t[0])

t.label() contains the top-most node in the tree t. We can see the list of
words that yields the parse tree using t.leaves(). Using len(t), we can get
the number of child nodes to t.label(). Each of these child nodes and their
subtrees can be accessed using t[0].label() and t[0] respectively.

Using the above utilities, we can find out the subject of any given sentence. The
following code prints the subject NP phrase in the first sentence of ’wsj_0001’

? Type:

>>> t = treebank.parsed_sents('wsj_0001.mrg')[0]

>>> for ch_tree in t:

... if (ch_tree.label().startswith('NP-SBJ')):

... print ch_tree.leaves()

9

8 Exercises

EXERCISE 1

Create a class named Queue that models a queue: the first element that enters
is the first that exits (FIFO: First In, First Out). The class will use a list to
maintain the data. It will expose the following methods:

• isempty(): verifies if the queue is empty

• push(item) inserts an element at the end of the queue

• pop(): extracts and returns the first element in the queue (possibly only
if the queue is not empty)

Import the module into the python shell, and test it Remember to create the
list that contains the data before accessing to it.

EXERCISE 2

Using your preferred editor, create a class named Stack that models a stack: the
last element that enters is the first that exits (LIFO: Last in, First Out). The
class willl use a list to maintain the data. It will expose the following methods:

• isempty(): verifies if the stack is empty

• push(item): inserts an element at the end of the stack

• pop(): extracts and returns the last element of the stack (possibly only if
the stack is not empty)

Import the module into the python shell, and test it. Remember to create the
list that contains the data before accessing to it.

EXERCISE 3

Using your favourite editor, create a file that defines a class Checker that con-
tains the function you wrote in Exercise 5 of Lab 1. Save the file as “oo_checker.py”
in your “MyPython” directory. Then import your new module from the python
shell, instantiate the class into an object and call the method.

EXERCISE 4

Using your preferred editor, create a class that checks if a string (infix) is con-
tained in other strings. The class must be initialised passing the infix string,
that must be stored in a class variable. The class must expose the method
check(string) that verifies if infix is contained in the passed string (you can
use the operator in to verify if a string is contained in another one:
string1 in string2).

Hint Remember to use self when trying to access to class methods and at-
tributes.

10

Import your module into the python shell, and test its behaviour (you must
instantiate the class passing the infix string, and then call the method check
passing different strings)

Hint If you use the statement import modulename, remember to use the mod-
ulename prefix in front of the class name. If you make an error in the class, and
you need to reimport the module, use reload(modulename). import will not
reimport a module already imported. You will also have to reinstantiate the
class.

EXERCISE 5

Create a class for managing a phone book. The user must be able to:

• insert a name and the relevant phone number,

• obtain a number from a name,

• verify if name is in the book,

• list all the names and phone numbers in the book,

• delete a name from the book

• as optional feature, the user should be able to print in alphabetical order
the names and their phone numbers

Import your class into the python shell, and test it (remember to instantiate
the class).

Hint Use a dictionary to store the data, and remember to create the it before
using it. You can use the method keys() to obtain the list of all the keys. Then
you can apply any method available for the lists on the list you have obtained.

EXERCISE 6

Add to the pattern:

r'\w+|\$\d+\.\d+|[^\w\s]+'

the option to tokenize percentages as a single tokens, for instance:

• 100.00%, 10.5%, and 10.234%.

Hint Use the union operator (|) to add your option to the start of pattern.
Test with the following text:

>>> text = 'The interest does not exceed 8.25%.'

11

EXERCISE 7

Use the following code as a starting point:

>>> from nltk.corpus import brown

>>> from nltk.probability import ConditionalFreqDist

>>> cfdist = ConditionalFreqDist()

>>> prev=None

>>> for fileid in brown.fileids():

... for sntc in brown.sents(fileid):

... for token in sntc:

... cfdist[prev][token] += 1

... prev=token

...

>>> cfdist['living']

>>> word = 'an'

>>> for i in range(20):

... print word,

... word = cfdist[word].max()

...

With ’an’, the text generator gets stuck in a cycle within the first 20 words. Mod-
ify the program to choose the next word randomly from a list of the most likely
words in the given context. (Hint: store the most likely words in a list lwords,
and then randomly choose a word from the list using random.choice(lwords).
Don’t forget to import the random module. In order to find the most likely
words, use sorted() instead of samples()).

• Remember that we saw at the start of this section that each part of the
Brown Corpus corresponds to a different genre of English. For example,
Part j corresponds to scientific text. Select a genre of your choice from the
Brown Corpus. Train your system on this corpus and get it to generate
random text. You may have to experiment with different start words.

• Try the same approach with a different genre.

• Compare the generated texts. How do the resulting texts differ?.

EXERCISE 8

Create a new grammar (grammar3) using as a base grammar2 (from section 6)
plus the production NP -> Det N PP.

grammar2:

S -> NP VP

NP -> "I" | "John" | "Mary" | "Bob" | Det N

VP -> V NP | V NP PP

V -> "saw" | "ate"

12

Det -> "a" | "an" | "the" | "my"

N -> "dog" | "telescope" | "apple"

PP -> P NP

P -> "on" | "with"

• Parse the sentence Mary saw the dog with the telescope. How many parse
trees do you get?

• For grammar2, write down two unambiguous sentences (that yields just
one tree), two ambiguous sentences (that yields more than one tree), and
two ungrammatical sentences (that yields no tree at all).

EXERCISE 9

>>> t = treebank.parsed_sents('wsj_0001.mrg')[0]

>>> for ch_tree in t:

... if (ch_tree.label().startswith('NP-SBJ')):

... print ch_tree.leaves()

• Extend the above program to identify the subject in all the sentences in
’wsj_0003’.

• A subordinate clause in a sentence will have its own subject. So, extend
the code (using recursion) to identify all the subjects in every sentence.

13

