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Last Class

I Probabilistic CFGs attach to each rule in the grammar a
probability

I The CYK algorithm can be turned probabilistic: we have a
chart with three indices ranging over nonterminals, beginning
index and end index

I Each such element in the chart has the maximal probability of
generating a tree spanning the corresponding phrase headed
by that nonterminal

But where do the probabilities come from?

What forms of grammar can we have?
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Recursive description of probabilistic CYK

Call Chart[A, i , j ] the probability of the highest-probability
derivation of wi+1...wj from A.

Definition of the CYK algorithm:

Chart[A, i , i + i ] =p(A→ wi+1)

Chart[A, i , j ] = max
{k:i<k<j}

max
{B,C :A→B C∈G}

Chart[B, i , k]× Chart[C , k , j ]× p(A→ B C )
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Standard PCFGs
Parameter Estimation
Problem 1: Assuming Independence
Problem 2: Ignoring Lexical Information

Lexicalized PCFGs
Lexicalization
Head Lexicalization

Reading:

J&M 2nd edition, ch. 14.2–14.6,
NLTK Book, Chapter 8, final section on Weighted
Grammar.
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Question

S → NP VP (1.0) NPR → John (0.5)
NP → DET N (0.7) NPR → Mary (0.5)
NP → NPR (0.3) V → saw (0.4)
VP → V PP (0.7) V → loves (0.6)
VP → V NP (0.3) DET → a (1.0)
PP → Prep NP (1.0) N → cat (0.6)

N → saw (0.4)

What is the probability of the sentence John saw a saw?

1. 0.02

2. 0.00016

3. 0.00504

4. 0.0002
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Where the Probabilities Come From?
The case of hidden Markov models:

I/PRP was/VBD walking/VBG down/IN the/DT high/JJ
street/NN yesterday/NN when/CC I/PRP noticed/VBD an/DT
old/JJ man/NN acting/VBG suspiciously/RB . He/PRP was/VBD
peering/VBG into/IN various/JJ shop/NN windows/NNS and/CC
writing/VBG things/NNS in/IN a/DT notebook/NN .
When/WRB he/PRP spotted/VBD me/PRP, he/PRP
stuffed/VBD the/DT notebook/NN into/IN his/PRP$ pocket/NN
and/CC wandered/VBD off/RP ./.

I Count the number of times word w occurs with tag t.

p(w | t) = count(w , t)/
∑
w ′

count(w ′, t)

I Count the number of times tag t appears after tag t ′.

p(t | t ′) = count(t ′, t)/
∑
t′′

count(t ′, t ′′)
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Parameter Estimation

In a PCFG every rule is associated with a probability.
But where do these rule probabilities come from?

Use a large parsed corpus such as the Penn Treebank.

( (S

(NP-SBJ (DT That) (JJ cold)

(, ,)

(JJ empty) (NN sky) )

(VP (VBD was)

(ADJP-PRD (JJ full)

(PP (IN of)

(NP (NN fire)

(CC and)

(NN light) ))))

(. .) ))

S → NP-SBJ VP
VP → VBD ADJP-PRD
PP → IN NP
NP → NN CC NN
etc.
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Parameter Estimation

In a PCFG every rule is associated with a probability.
But where do these rule probabilities come from?

Use a large parsed corpus such as the Penn Treebank.

I Obtain grammar rules by reading them off the trees.

I Calculate number of times LHS → RHS occurs over number
of times LHS occurs.

P(α→ β|α) =
Count(α → β)∑
γ Count(α → γ)

=
Count(α → β)

Count(α)
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Parameter Estimation

Corpus of parsed sentences:
’S1: [S [NP grass] [VP grows]]’
’S2: [S [NP grass] [VP grows] [AP slowly]]’
’S3: [S [NP grass] [VP grows] [AP fast]]’
’S4: [S [NP bananas] [VP grow]]’

Compute PCFG probabilities:

r Rule α P(r |α)
r1 S → NP VP S 2/4
r2 S → NP VP AP S 2/4

r3 NP → grass NP 3/4
r4 NP → bananas NP 1/4
r5 VP → grows VP 3/4
r6 VP → grow VP 1/4
r7 AP → fast AP 1/2
r8 AP → slowly AP 1/2
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Parameter Estimation

With these parameters (rule probabilities), we can now compute
the probabilities of the four sentences S1–S4:

P(S1) = P(r1|S)P(r3|NP)P(r5|VP)
= 2/4 · 3/4 · 3/4 = 0.28125

P(S2) = P(r2|S)P(r3|NP)P(r5|VP)P(r7|AP)
= 2/4 · 3/4 · 3/4 · 1/2 = 0.140625

P(S3) = P(r2|S)P(r3|NP)P(r5|VP)P(r7|AP)
= 2/4 · 3/4 · 3/4 · 1/2 = 0.140625

P(S4) = P(r1|S)P(r4|NP)P(r6|VP)
= 2/4 · 1/4 · 1/4 = 0.03125
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Motivation behind such estimation

One criterion for finding rule weights of a PCFG (or parameters in
general) is the maximum likelihood criterion.

It means we want to find rule weights which make the treebank we
observe most likely if we multiply in all probabilities together (we
assume the trees are independent)

Counting and normalising satisfies this criterion
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Parameter Estimation: Intuition

Suppose that we have a bag containing two types of marbles: red
and black. How would you estimate the ratio of red to black
marbles in the bag?

More precisely, what is p(red)? (Note: p(black) = 1− p(red)).

Experiment. Draw ten marbles from the bag (replacing them each
time). Suppose you draw 7 red and 3 black marbles. What is
p(red)?

1. .3

2. .5

3. .7

4. 1

Why?
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Parameter Estimation: Maximum Likelihood

Since we saw 7 red and 3 black marbles, we can write the likelihood
of the observed data in terms of the unknown parameter p(red):

p(data) = p(red)7 × (1− p(red))3 (1)

p(red) is unknown. What’s a reasonable way to set it?

How about this?

arg max
p(red)∈[0,1]

p(data) = p(red)7 × (1− p(red))3 (2)
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Parameter Estimation: Maximum Likelihood

Now we have a basic calculus problem. Solve:

arg max
p(red)∈[0,1]

p(data) = p(red)7 × (1− p(red))3 (3)

What p(data) looks like:
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Maximum Likelihood Estimation

MLE is one of the most basic parameter estimation methods.
When you have lots of data, it’s a reasonable first choice.

What are some cases where it might not work?

Question. What if you don’t have lots of data (for the parameter
you want to estimate)?
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Parameter Estimation

What if we don’t have a treebank, but we do have an unparsed
corpus and (non-probabilistic) parser?

1. Take a CFG and set all rules to have equal probability.

2. Parse the (flat) corpus with the CFG.

3. Adjust the probabilities.

4. Repeat steps two and three until probabilities converge.

This is the inside-outside algorithm (Baker, 1979), a type of
Expectation Maximisation algorithm. It can also be used to induce
a grammar, but only with limited success.
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Problems with Standard PCFGs

While standard PCFGs are already useful for some purposes, they
can produce poor result when used for disambiguation.

Why is that?

1. They assume the rule choices are independent of one another.

2. They ignore lexical information until the very end of the
analysis, when word classes are rewritten to word tokens.

How can this lead to bad choices among possible parses?
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Problem 1: Assuming Independence

By definition, a CFG assumes that the expansion of non-terminals
is completely independent. It doesn’t matter:

I where a non-terminal is in the analysis;

I what else is (or isn’t) in the analysis.

The same assumption holds for standard PCFGs: The probability of
a rule is the same, no matter

I where it is applied in the analysis;

I what else is (or isn’t) in the analysis.

But this assumption is too simple!
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Problem 1: Assuming Independence

S → NP VP NP → PRO
VP → VBD NP NP → DT NOM

The above rules assign the same probability to both these trees,
because they use the same re-write rules, and probability
calculations do not depend on where rules are used.

S

NP VP

VBD

wrote

NP

PRO

them

S

NP

PRO

They

VP

VBD

wrote

NP
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Problem 1: Assuming independence

But in speech corpora, 91% of 31021 subject NPs are pronouns:

(1) a. She’s able to take her baby to work with her.
b. My wife worked until we had a family.

while only 34% of 7489 object NPs are pronouns:

(2) a. Some laws absolutely prohibit it.
b. It wasn’t clear how NL and Mr. Simmons would

respond if Georgia Gulf spurns them again.

So the probability of NP → PRO should depend on where in the
analysis it applies (e.g., subject or object position).
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Another example of independence

Question: which tree will get higher probability?
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Addressing the independence problem
One way of introducing greater sensitivity into PCFGs is via parent
annotation: subdivide (all or some) non-terminal categories
according to the non-terminal that appears as the node’s
immediate parent. E.g. NP subdivides into NPS , NPVP , . . .

S → NPS VPS NPS → PRO
VPS → VBDVP NPVP NPVP → PRO, etc.

S

NPS VPS

VBD

wrote

NPVP

PRO

them

S

NPS

PRO

They

VPS

VBD

wrote

NPVP
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Addressing the independence problem

Node-splitting via parent annotation allows different probabilities
to be assigned e.g. to the rules

NPS → PRO, NPVP → PRO

However, too much node-splitting can mean not enough data to
obtain realistic rule probabilities, unless we have an enormous
training corpus.

There are even algorithms that try to identify the optimal amount
of node-splitting for a given training set!
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Problem 2: Ignoring Lexical Information

S → NP VP N → sack | bin | · · ·
NP → NNS | NN NNS → students
VP → VBD NP | VBD NP PP V → dumped | spotted
PP → P NP DT → a | the
NP → DT NN P → in

Consider the sentences:

(3) a. The students dumped the sack in the bin.
b. The students spotted the flaw in the plan.

Because rules for rewriting non-terminals ignore word tokens until
the very end, let’s consider these simply as strings of POS tags:

(4) DT NNS VBD DT NN IN DT NN
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Problem 2: Ignoring Lexical Information

S

NP

DT NNS

VP

VBD NP

DT NN

PP

IN NP

DT NN

S

NP

DT NNS

VP

VBD NP

NP

DT NN

PP

IN NP

DT NN

Which do we want for The students dumped the sack in the bin?
Which for The students spotted the flaw in the plan?

The most appropriate analysis depends in part on the actual words
occurring. The word dumped, implying motion, is more likely to
have an associated prepositional phrase than spotted.
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Lexicalized PCFGs

A PCFG can be lexicalised by associating a word with every
non-terminal in the grammar.

It is head-lexicalised if the word is the head of the constituent
described by the non-terminal.

Each non-terminal has a head that determines syntactic properties
of phrase (e.g., which other phrases it can combine with).

Example

Noun Phrase (NP): Noun
Adjective Phrase (AP): Adjective
Verb Phrase (VP): Verb
Prepositional Phrase (PP): Preposition
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Lexicalization
We can lexicalize a PCFG by annotating each non-terminal with its
head word, starting with the terminals – replacing

VP → V NP PP VP → V NP
NP → DT NN NP → NP PP
NP → NNS PP → P NP

with rules such as

VP(dumped) → V(dumped) NP(sack) PP(in)
VP(spotted) → V(spotted) NP(flaw) PP(in)
VP(dumped) → V(dumped) NP(sack)
VP(spotted) → V(spotted) NP(flaw)
NP(flaw) → DT(the) NN(flaw)
PP(in) → P(in) NP(bin)
PP(in) → P(in) NP(plan)
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Head Lexicalization

In principle, each of these rules can now have its own probability.
But that would mean a ridiculous expansion in the set of grammar
rules, with no parsed corpus large enough to estimate their
probabilities accurately.

Instead we just lexicalize the head of phrase:

VP(dumped) → V(dumped) NP PP
VP(spotted) → V(spotted) NP PP
VP(dumped) → V(dumped) NP
VP(spotted) → V(spotted) NP
NP(flaw) → DT NN(flaw)
PP(in) → P(in) NP

Such grammars are called lexicalized PCFGs or, alternatively,
probabilistic lexicalized CFGs.
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Head Lexicalization

For lexicalized PCFGs, rule probabilities can be reasonably
estimated from a corpus.

In the simplest version, the lexicalized rules are supplemented by
head selection rules, whose probabilities can also be estimated
from a corpus:

VP → VP(dumped)
VP → VP(spotted)
NP → NP(sack)
NP → NP(flaw)
PP → PP(in)
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How many parameters in a lexicalized PCFG?

When all phrases are annotated with head words (say the grammar
is in Chomsky normal form, and we have a vocabulary of size V
and N nonterminals)?

When only the head phrase is annotated with a head word?
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Combining approaches

We can also combine the ideas of head lexicalization with parent
annotation, leading to rules like

NPVP(dumped) → NP(sack)VP(dumped)

NPVP(spotted) → NP(flaw)VP(spotted)

PPVP(dumped) → PP(in)VP(dumped)

The probabilities for such rules can be used to take account of
commonly occurring word combinations, e.g. of verb-object or
verb-preposition. These include long-distance correlations invisible
to N-gram technology.

Grammars with these doubly-lexicalized rules are still feasible,
given enough training data. This is roughly the idea behind the
Collins parser.
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Summary

I The rule probabilities of a PCFG can be estimated by
counting how often the rules occur in a corpus.

I The usefulness of PCFGs is limited by the lack of lexical
information and by strong independence assumptions.

I These limitations can be overcome by lexicalizing the
grammars, i.e., by conditioning the rule probabilities on the
head word of the rule.

Demo: the Stanford parser:
http://nlp.stanford.edu:8080/parser/
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