
Regular Expressions cont’d; Applications to string
and pattern matching

Informatics 2A: Lecture 6

Mary Cryan

School of Informatics
University of Edinburgh
mcryan@inf.ed.ac.uk

28 September 2018

1 / 22

mcryan@inf.ed.ac.uk

Recap of Lecture 5

I Finished off the details of the marking algorithm for
minimizing DFAs, plus discussed the alternative approach of
Brzozowskis’s “double reversal” (without details).

I Regular languages are closed under the operations of
concatenation and Kleene star.

I This is proved using ε-NFAs, which can be easily converted to
ordinary NFAs.

I (still to do) Regular expressions provide a textual
representation of regular languages.

I (still to do) Kleene’s Theorem: regular expressions define
exactly the regular languages.

I We won’t prove the difficult half of Kleene’s theorem formally,
but equation solving using Kleene algebra and Arden’s Rule
gives the idea.

2 / 22

Regular expressions
We’ve been looking at ways of specifying regular languages via
machines (often presented as pictures). But it’s very useful for
applications to have more textual ways of defining languages.

A regular expression is a written mathematical expression that
defines a language over a given alphabet Σ.

I The basic regular expressions are

∅ ε a (for a ∈ Σ)

I From these, more complicated regular expressions can be built
up by (repeatedly) applying the two binary operations +, .
and the unary operation ∗ . Example: (a.b + ε)∗ + a

We use brackets to indicate precedence. In the absence of brackets,
∗ binds more tightly than ., which itself binds more tightly than +.

So a + b.a∗ means a + (b.(a∗))

Also the dot is often omitted: ab means a.b
3 / 22

How do regular expressions define languages?

A regular expression is itself just a written expression. However,
every regular expression α over Σ can be seen as defining an actual
language L(α) ⊆ Σ∗ in the following way.

I L(∅) = ∅, L(ε) = {ε}, L(a) = {a}.
I L(α + β) = L(α) ∪ L(β)

I L(α.β) = L(α) .L(β)

I L(α∗) = L(α)∗

Example: a + ba∗ defines the language {a, b, ba, baa, baaa, . . .}.

The languages defined by ∅, ε, a are obviously regular.

What’s more, we’ve seen that regular languages are closed under
union, concatenation and Kleene star.

This means every regular expression defines a regular language.
(Formal proof by induction on the size of the regular expression.)

4 / 22

Exercises

Consider (again) the language

{x ∈ {0, 1}∗ | x contains an even number of 0’s}

Which of the following regular expressions define the above
language?

1. (1∗01∗01∗)∗

2. (1∗01∗0)∗1∗

3. 1∗(01∗0)∗1∗

4. (1 + 01∗0)∗

Answer: 2 and 4 define the required language. 1 doesn’t: e.g. 11
doesn’t match the expression. 3 doesn’t: e.g. 00100 doesn’t match
the expression.

5 / 22

Exercises

Consider (again) the language

{x ∈ {0, 1}∗ | x contains an even number of 0’s}

Which of the following regular expressions define the above
language?

1. (1∗01∗01∗)∗

2. (1∗01∗0)∗1∗

3. 1∗(01∗0)∗1∗

4. (1 + 01∗0)∗

Answer: 2 and 4 define the required language. 1 doesn’t: e.g. 11
doesn’t match the expression. 3 doesn’t: e.g. 00100 doesn’t match
the expression.

5 / 22

Kleene’s theorem

We’ve seen that every regular expression defines a regular language.

Remarkably, the converse is also true: every regular language can
be defined by a regular expression.

The equivalence between regular languages and expressions is:

Kleene’s theorem

DFAs and regular expressions give rise to exactly the same
class of languages (the regular languages).

(For proof, see Kozen, Lecture 9.)
As we’ve already seen, NFAs (with or without ε-transitions) also
give rise to this class of languages.

So the evidence is mounting that the class of regular languages is
mathematically a very natural and well-behaved one.

6 / 22

Kleene algebra

Regular expressions give a textual way of specifying regular
languages. This is useful e.g. for communicating regular languages
to a computer.

Another benefit: regular expressions can be manipulated using
algebraic laws (Kleene algebra). For example:

α + (β + γ) = (α + β) + γ α + β = β + α
α + ∅ = α α + α = α
α(βγ) = (αβ)γ εα = αε = α

α(β + γ) = αβ + αγ (α + β)γ = αγ + βγ
∅α = α∅ = ∅ ε + αα∗ = ε + α∗α = α∗

Often these can be used to simplify regular expressions down to
more pleasant ones.

7 / 22

Other reasoning principles

Let’s write α ≤ β to mean L(α) ⊆ L(β) (or equivalently
α + β = β). Then

αγ + β ≤ γ ⇒ α∗β ≤ γ
β + γα ≤ γ ⇒ βα∗ ≤ γ

Arden’s rule: Given an equation of the form X = αX + β, its
smallest solution is X = α∗β.

What’s more, if ε 6∈ L(α), this is the only solution.

Beautiful fact: The rules on this slide and the last form a complete
set of reasoning principles, in the sense that if L(α) = L(β), then
‘α = β’ is provable using these rules. (Beyond scope of Inf2A.)

8 / 22

DFAs to regular expressions

We use an example to show how to convert a DFA to an
equivalent regular expression.

0

1 1

0

p q

For each state r , let the variable Xr stand for the set of strings
that take us from r to an accepting state. Then we can write some
simultaneous equations:

Xp = 1Xp + 0Xq + ε

Xq = 1Xq + 0Xp

9 / 22

Where do the equations come from?

Consider:
Xp = 1Xp + 0Xq + ε

This asserts the following.

Any string that takes us from p to an accepting state is:

I a 1 followed by a string that takes us from p to an accepting
state; or

I a 0 followed by a string that takes us from q to an accepting
state; or

I the empty string.

Note that the empty string is included because p is an accepting
state.

10 / 22

Solving the equations

We solve the equations by eliminating one variable at a time:

Xq = 1∗0Xp by Arden’s rule

So Xp = 1Xp + 01∗0Xp + ε

= (1 + 01∗0)Xp + ε

So Xp = (1 + 01∗0)∗ by Arden’s rule

Since the start state is p, the resulting regular expression for Xp is
the one we are seeking. Thus the language recognised by the
automaton is:

(1 + 01∗0)∗

The method we have illustrated here, in fact, works for arbitrary
NFAs (without ε-transitions).

11 / 22

Theory of regular languages: overview

How it all fits together . . .

12 / 22

Applications of regular language technology

We’ll now start to look at several practical applications of the
theory we’ve covered:

I efficient string searching

I more general pattern searching

I data validation, e.g. for XML documents

I lexical analysis for computer languages (first stage of the
language processing pipeline)

I automated verification of safety and liveness properties for
complex interacting systems — typically via model checking.

Further applications will be discussed in the Natural Language part
of the course.

13 / 22

String and pattern matching with Grep tools

Important practical problem: Search a large file (or batch of files)
for specific strings, or strings of a certain form.

Most UNIX/Linux-style systems since the ’70s have provided a
bunch of utilities for this purpose, known as Grep (Global Regular
Expression Print).

Extremely useful and powerful in the hands of a practised user.
Make serious use of the theory of regular languages.

Typical uses:

grep "[0−9]*\.[0−9][0−9]" document.txt

egrep "(^|[^a−zA−Z])[tT]he([^a−zA−Z]|$)" document.txt

−− searches for prices in pounds and pence

−− searches for occurrences of the word "the"

14 / 22

grep, egrep, fgrep

There are three related search commands, of increasing generality
and correspondingly decreasing speed:

I fgrep searches for one or more fixed strings, using an efficient
string matching algorithm.

I grep searches for strings matching a certain pattern (a simple
kind of regular expression).

I egrep searches for strings matching an extended pattern
(these give the full power of regular expressions).

All three of these make use of the ideas we’ve been studying.

15 / 22

Efficient string matching

Suppose we want to search for occurrences of a shortish string s in
a very long document D.

Obvious method: For each position p within D, check whether
there’s an occurrence of s starting at p, by working through s one
character at a time until:

I either there’s a character mismatch

I or we reach the end of s (search successful).

(Example on next slide.)

Can we do better?

16 / 22

Naive string search: an example

Suppose we’re searching for nano within a long document D
containing nanobananas.

n a n o b a n a n a s
n a n X

X
n X

X
X

X
n a n X

X
n a X

X
X

Notice that several characters in D are visited more than once.

17 / 22

Better method: The Knuth-Morris-Pratt algorithm

The following NFA clearly accepts all strings ending in nano:

0 1 2

any char

n a n o
3 4

So we can . . .

1. First convert this to an equivalent DFA M. (Costs some
time—but worth it if s is short and D is very long.)

2. Run D through M. (Each character of D processed just once;
no buffering required.)

3. Every time we enter an accepting state of M, signal a hit.

18 / 22

The corresponding DFA

0
n a n o

01 02 013 04

not n

not n

a

n

n

not n,a,o

not n

not n,a
n

I For NFAs of this kind, the subset construction behaves nicely:
no state explosion. Can even optimize the construction a bit
for this class of NFAs.

I Useful in practice for documents with a lot of repetition.
E.g. imagine searching for www.inf.ed.ac.uk/inf2a/ in a
long list of web addresses, where most begin with www. and
many begin with www.inf.ed.ac.uk/

19 / 22

Optional exercise

1. Suppose now that the search string is nana. Construct the
appropriate DFA in this case.

2. Convince yourself that this will detect all occurrences of nana,
even overlapping ones!

20 / 22

Reading

Relevant reading:

I Regular expressions: Kozen chapters 7,8; J & M chapter 2.1.

I From regular expressions to NFAs: Kozen chapter 8; J & M
chapter 2.3.

I Kleene algebra: Kozen chapter 9.

I From NFAs to regular expressions: Kozen chapter 9.

21 / 22

Next time: pattern matching, lexical analysis

We will first consider how we search for “one of a group” of fixed
strings. Then we will continue to pattern matching via egrep and
grep (using r.ex. symbols).

How does the colouring work?
22 / 22

	Regular expressions
	Regular expressions again
	From regular expressions to regular languages

	Kleene's theorem and Kleene algebra
	Kleene's theorem
	Kleene algebra
	From DFAs to regular expressions

	Theory of regular languages: overview
	String and pattern matching
	grep and its friends

