
Regular expressions and Kleene’s theorem
Informatics 2A: Lecture 5

Mary Cryan

School of Informatics
University of Edinburgh
mcryan@inf.ed.ac.uk

26 September 2018

1 / 18

mcryan@inf.ed.ac.uk

Finishing DFA minimization
An algorithm for minimization

More closure properties of regular languages
Operations on languages
ε-NFAs
Closure under concatenation and Kleene star

Regular expressions
Regular expressions

2 / 18

An algorithm for minimization

First eliminate any unreachable states (easy).

Then create a table of all possible pairs of states (p, q), initially
unmarked. (E.g. a two-dimensional array of booleans, initially set
to false.) We mark pairs (p, q) as and when we discover that p and
q cannot be equivalent.

1. Start by marking all pairs (p, q) where p ∈ F and q 6∈ F , or
vice versa.

2. Look for unmarked pairs (p, q) such that for some u ∈ Σ, the
pair (δ(p, u), δ(q, u)) is marked. Then mark (p, q).

3. Repeat step 2 until no such unmarked pairs remain.

If (p, q) is still unmarked, can collapse p, q to a single state.

3 / 18

Why does this algorithm work?
Let’s say a string s separates states p, q if s takes us from p to an
accepting state and from q to a rejecting state, or vice versa.
Such an s is a reason for not merging p, q into a single state.
We mark (p, q) when we find that there’s a string separating p, q:

I If p ∈ F and q 6∈ F , or vice versa, then ε separates p, q.

I Suppose we mark (p, q) because we’ve found a previously marked

pair (p′, q′) where p
a→ p′ and q

a→ q′ for some a.
If s ′ is a separating string for p′, q′, then as ′ separates p, q.

We stop when there are no more pairs we can mark.
If (p, q) remains unmarked, why are p, q equivalent?

I If s = a1 . . . an were a string separating p, q, we’d have

p = p0
a1→ p1

a2→ · · · pn−1
an→ pn ,

q = q0
a1→ q1

a2→ · · · qn−1
an→ qn

with just one of pn, qn accepting. So we’d have marked (pn, qn) in
Round 0, (pn−1, qn−1) by Round 1, . . . and (p, q) by Round n.

4 / 18

Alternative: Brzozowski’s minimization algorithm

There’s a surprising alternative algorithm for minimizing a DFA
M = (Q, δ, s,F) for a language L. Assume no unreachable states.

I Reverse the machine M: flip all the arrows, make F the set of
start states, and make s the only accepting state.
This gives an NFA N (not typically a DFA) which accepts
Lrev = {rev(s) | s ∈ L}.

I Apply the subset construction to N, omitting unreachable
states, to get a DFA P.
It turns out that P is minimal for Lrev (clever)!

I Now apply the same two steps again, starting from P.
The result is a minimal DFA for (Lrev)rev = L.

5 / 18

Comparing Brzozowski and marking algorithms

I Both algorithms result in the same minimal DFA for a given
DFA M (recall that there’s a unique minimal DFA up to
isomorphism.)

I In the worst case, Brzozowski’s algorithm can take time O(2n)
for a DFA with n states. The marking algorithm, as presented,
runs within time O(kn4), where k = |Σ|. (Can be improved
further.)

I There are some practical cases where Brzozowski does better.

I Marking algorithm is probably easier to understand, and
illustrates a common pattern (more examples later in course).

6 / 18

Improving determinization

Now we have a minimization algorithm, the following improved
determinization procedure is possible.

To determinize an NFA M with n states:

1. Perform the subset construction on M to produce an
equivalent DFA N with 2n states.

2. Perform the minimization algorithm on N to produce a DFA
Min(N) with ≤ 2n states.

Using this method we are guaranteed to produce the smallest
possible DFA equivalent to M.

In many cases this avoids the exponential state-space blow-up.

In some cases, however, an exponential blow-up is unavoidable.

7 / 18

Question from lecture 4

Consider our example NFA over {0, 1}:

q0 q1 q4 q5q2 q3

0,1

1 0,10,10,10,1 0,1 0,1 0,1

What is the number of states of the smallest DFA that recognises
the same language?

Answer: The smallest DFA has 32 states.

More generally, the smallest DFA for the language:

{x ∈ Σ∗ | the n-th symbol from the end of x is 1}

has 2n states. Whereas, there is an NFA with n + 1 states.

8 / 18

Question from lecture 4

Consider our example NFA over {0, 1}:

q0 q1 q4 q5q2 q3

0,1

1 0,10,10,10,1 0,1 0,1 0,1

What is the number of states of the smallest DFA that recognises
the same language?

Answer: The smallest DFA has 32 states.

More generally, the smallest DFA for the language:

{x ∈ Σ∗ | the n-th symbol from the end of x is 1}

has 2n states. Whereas, there is an NFA with n + 1 states.

8 / 18

Question from lecture 4

Consider our example NFA over {0, 1}:

q0 q1 q4 q5q2 q3

0,1

1 0,10,10,10,1 0,1 0,1 0,1

What is the number of states of the smallest DFA that recognises
the same language?

Answer: The smallest DFA has 32 states.

More generally, the smallest DFA for the language:

{x ∈ Σ∗ | the n-th symbol from the end of x is 1}

has 2n states. Whereas, there is an NFA with n + 1 states.

8 / 18

Concatenation

We write L1.L2 for the concatenation of languages L1 and L2,
defined by:

L1.L2 = {xy | x ∈ L1, y ∈ L2}

For example, if L1 = {aaa} and L2 = {b, c} then L1.L2 is the
language {aaab, aaac}.

Later we will prove the following closure property.

If L1 and L2 are regular languages then so is L1.L2.

9 / 18

Kleene star

We write L∗ for the Kleene star of the language L, defined by:

L∗ = {ε} ∪ L ∪ L.L ∪ L.L.L ∪ . . .

For example, if L3 = {aaa, b} then L∗3 contains strings like aaaaaa,
bbbbb, baaaaaabbaaa, etc.

More precisely, L∗3 contains all strings over {a, b} in which the
letter a always appears in sequences of length some multiple of 3

Later we will prove the following closure property.

If L is a regular language then so is L∗.

10 / 18

Exercise

Consider the language over the alphabet {a, b, c}

L = {x | x starts with a and ends with c}

Which of the following strings are valid for the language L.L ?

1. abcabc

2. acacac

3. abcbcac

4. abcbacbc

Answer: 1,2,3 are valid, but 4 isn’t. (To split the string into two
L-strings, we’d need c followed by a.)

11 / 18

Exercise

Consider the language over the alphabet {a, b, c}

L = {x | x starts with a and ends with c}

Which of the following strings are valid for the language L.L ?

1. abcabc

2. acacac

3. abcbcac

4. abcbacbc

Answer: 1,2,3 are valid, but 4 isn’t. (To split the string into two
L-strings, we’d need c followed by a.)

11 / 18

Another exercise

Consider the (same) language over the alphabet {a, b, c}

L = {x | x starts with a and ends with c}

Which of the following strings are valid for the language L∗ ?

1. ε

2. acaca

3. abcbc

4. acacacacac

Answer: 1,3,4 are valid, but not 2. (In this particular case, it so
happens that L∗ = L + {ε}, but this won’t be true in general.)

12 / 18

Another exercise

Consider the (same) language over the alphabet {a, b, c}

L = {x | x starts with a and ends with c}

Which of the following strings are valid for the language L∗ ?

1. ε

2. acaca

3. abcbc

4. acacacacac

Answer: 1,3,4 are valid, but not 2. (In this particular case, it so
happens that L∗ = L + {ε}, but this won’t be true in general.)

12 / 18

NFAs with ε-transitions

We can vary the definition of NFA by also allowing transitions
labelled with the special symbol ε (not a symbol in Σ).

The automaton may (but doesn’t have to) perform a spontaneous
ε-transition at any time, without reading an input symbol.

This is quite convenient: for instance, we can turn any NFA into an
ε-NFA with just one start state and one accepting state:

ε

ε ε
ε

ε

ε

.

.

.

(Add ε-transitions from new start state to each state in S , and
from each state in F to new accepting state.)

13 / 18

Equivalence to ordinary NFAs

Allowing ε-transitions is just a convenience: it doesn’t
fundamentally change the power of NFAs.

If N = (Q,∆, S ,F) is an ε-NFA, we can convert N to an ordinary
NFA with the same associated language, by simply ‘expanding’ ∆
and S to allow for silent ε-transitions.

To achieve this, perform the following steps on N.

I For every pair of transitions q
a→ q′ (where a ∈ Σ) and

q′
ε→ q′′, add a new transition q

a→ q′′.

I For every transition q
ε→ q′, where q is a start state, make q′

a start state too.

Repeat the two steps above until no further new transitions or new
start states can be added.

Finally, remove all ε-transitions from the ε-NFA resulting from the
above process. This produces the desired NFA.

14 / 18

Closure under concatenation

We use ε-NFAs to show, as promised, that regular languages are
closed under the concatenation operation:

L1.L2 = {xy | x ∈ L1, y ∈ L2}

If L1, L2 are any regular languages, choose ε-NFAs N1,N2 that
define them. As noted earlier, we can pick N1 and N2 to have just
one start state and one accepting state.

Now hook up N1 and N2 like this:

N1 N2ε

Clearly, this NFA corresponds to the language L1.L2.

15 / 18

Closure under Kleene star

Similarly, we can now show that regular languages are closed under
the Kleene star operation:

L∗ = {ε} ∪ L ∪ L.L ∪ L.L.L ∪ . . .

For suppose L is represented by an ε-NFA N with one start state
and one accepting state. Consider the following ε-NFA:

 N
ε

ε

Clearly, this ε-NFA corresponds to the language L∗.

16 / 18

Regular expressions
We’ve been looking at ways of specifying regular languages via
machines (often presented as pictures). But it’s very useful for
applications to have more textual ways of defining languages.

A regular expression is a written mathematical expression that
defines a language over a given alphabet Σ.

I The basic regular expressions are

∅ ε a (for a ∈ Σ)

I From these, more complicated regular expressions can be built
up by (repeatedly) applying the two binary operations +, .
and the unary operation ∗ . Example: (a.b + ε)∗ + a

We use brackets to indicate precedence. In the absence of brackets,
∗ binds more tightly than ., which itself binds more tightly than +.

So a + b.a∗ means a + (b.(a∗))

Also the dot is often omitted: ab means a.b
17 / 18

Reading

Relevant reading:

I DFA minimization: Kozen Chapters 13 & 14.

I Regular expressions: Kozen chapters 7,8; J & M chapter 2.1.
(Both texts actually discuss more general ‘patterns’ — see
next lecture.)

I From regular expressions to NFAs: Kozen chapter 8; J & M
chapter 2.3.

Next two lectures: Some applications of all this theory.

I String and pattern matching

I Lexical analysis

I Model checking

18 / 18

	Finishing DFA minimization
	An algorithm for minimization

	More closure properties of regular languages
	Operations on languages
	-NFAs
	Closure under concatenation and Kleene star

	Regular expressions
	Regular expressions

