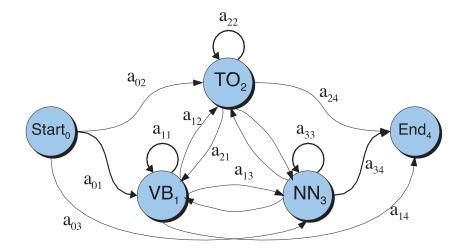
Fun with weighted FSTs Informatics 2A: Lecture 18

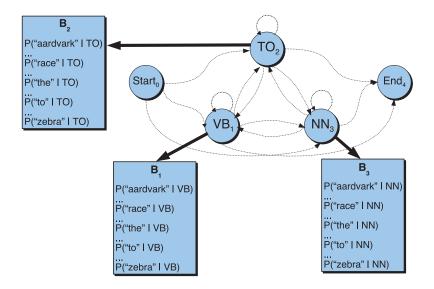
Shay Cohen

School of Informatics University of Edinburgh

27 October 2017


Definition of Hidden Markov Models

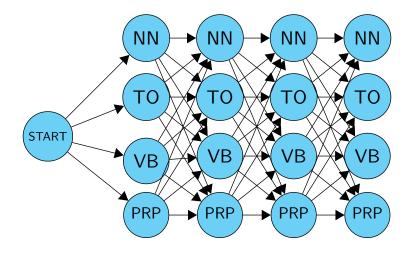
For our purposes, a Hidden Markov Model (HMM) consists of:


- A set Q = {q₀, q₁,..., q_T} of states, with q₀ the start state.
 (Our non-start states will correspond to *parts-of-speech*).
- A transition probability matrix $A = (a_{ij} \mid 0 \le i \le T, 1 \le j \le T)$, where a_{ij} is the probability of jumping from q_i to q_j . For each *i*, we require $\sum_{j=1}^{T} a_{ij} = 1$.
- For each non-start state q_i and word type w, an emission probability $b_i(w)$ of outputting w upon entry into q_i . (Ideally, for each i, we'd have $\sum_w b_i(w) = 1$.)

We also suppose we're given an observed sequence w_1, w_2, \ldots, w_n of word tokens generated by the HMM.

Transition Probabilities

Emission Probabilities



Transition and Emission Probabilities

	VB	то	NN	PRP
<s></s>	.019	.0043	.041	.67
VB	.0038	.035	.047	.0070
то	.83	0	.00047	0
NN	.0040	.016	.087	.0045
PRP	.23	.00079	.001	.00014

	I	want	to	race
VB	0	.0093	0	.00012
то	0	0	.99	0
NN	0	.000054	0	.00057
PRP	.37	0	0	0

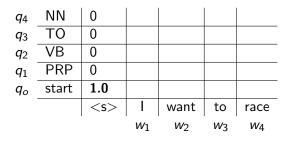
The HMM trellis

want to race

Keep a chart of the form Table(POS, i) where POS ranges over the POS tags and *i* ranges over the indices in the sentence. For all *T* and *i*:

$$\text{Table}(T, i+1) \leftarrow \max_{T'} \text{Table}(T', i) \times p(T|T') \times p(w_{i+1}|T)$$

and


$$\text{Table}(T,1) \leftarrow p(T|\langle s \rangle)p(w_1|T)$$

Table(., n) will contain the **probability** of the most likely sequence. To get the actual sequence, we need backpointers.

The Viterbi Algorithm: second example

q_4	NN	0				
q 3	ТО	0				
q 2	VB	0				
q_1	PRP	0				
q _o	start	1.0				
		<s></s>	I	want	to	race
			<i>w</i> ₁	W2	W3	W4

• For each state q_j at time *i*, compute $v_i(j) = \max_{k=1}^n v_{i-1}(k)a_{kj}b_j(w_i)$

- Create probability matrix, with one column for each observation (i.e., word token), and one row for each non-start state (i.e., POS tag).
- We proceed by filling cells, column by column.
- The entry in column *i*, row *j* will be the probability of the most probable route to state q_i that emits w₁...w_i.

q_4	NN	0	$1.0\times.041\times0$			
q_3	TO	0	$1.0\times.0043\times0$			
q_2	VB	0	1.0 imes .19 imes 0			
q_1	PRP	0	1.0 imes .67 imes .37			
q_o	start	1.0				
		<s></s>	I	want	to	race
			w ₁	<i>W</i> ₂	W3	W ₄

• For each state
$$q_j$$
 at time i , compute
 $v_i(j) = \max_{k=1}^n v_{i-1}(k) a_{kj} b_j(w_i)$

- v_{i-1}(k) is previous Viterbi path probability, a_{kj} is transition probability, and b_j(w_i) is emission probability.
- There's also an (implicit) backpointer from cell (i, j) to the relevant (i 1, k), where k maximizes v_{i-1}(k)a_{kj}.

q_4	NN	0	0	$.025 \times .0012 \times 0.000054$		
q_3	TO	0	0	$.025 \times .00079 \times 0$		
q_2	VB	0	0	.025 imes .23 imes .0093		
q_1	PRP	0	.025	.025 imes .00014 imes 0		
q_0	start	1.0				
		<s></s>	I	want	to	race
			w ₁	W ₂	W3	W ₄

• For each state
$$q_j$$
 at time i , compute
 $v_i(j) = \max_{k=1}^n v_{i-1}(k) a_{kj} b_j(w_i)$

- v_{i-1}(k) is previous Viterbi path probability, a_{kj} is transition probability, and b_j(w_i) is emission probability.
- There's also an (implicit) backpointer from cell (i, j) to the relevant (i 1, k), where k maximizes v_{i-1}(k)a_{kj}.

q_4	NN	0	0	.000000002	$.000053 \times .047 \times 0$	
q 3	ТО	0	0	0	$.000053 \times .035 \times .99$	
q_2	VB	0	0	.00053	$.000053 \times .0038 \times 0$	
q_1	PRP	0	.025	0	$.000053 \times .0070 \times 0$	
q_0	start	1.0				
		<s></s>	I	want	to	race
			w ₁	<i>W</i> ₂	W3	w ₄

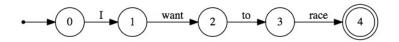
- v_{i-1}(k) is previous Viterbi path probability, a_{kj} is transition probability, and b_j(w_i) is emission probability.
- There's also an (implicit) backpointer from cell (i, j) to the relevant (i 1, k), where k maximizes v_{i-1}(k)a_{kj}.

q_4	NN	0	0	.000000002	0	$.0000018 \times .00047 \times .00057$
<i>q</i> ₃	ТО	0	0	0	.0000018	.0000018×0×0
q_2	VB	0	0	.00053	0	.0000018×.83×.00012
q_1	PRP	0	.025	0	0	.0000018 imes 0 imes 0
q_0	start	1.0				
		<s></s>	I	want	to	race
			W_1	W2	W3	W4

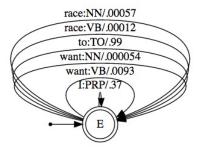
• For each state
$$q_j$$
 at time i , compute
 $v_i(j) = \max_{k=1}^n v_{i-1}(k) a_{kj} b_j(w_i)$

- v_{i-1}(k) is previous Viterbi path probability, a_{kj} is transition probability, and b_j(w_i) is emission probability.
- There's also an (implicit) backpointer from cell (i, j) to the relevant (i 1, k), where k maximizes v_{i-1}(k)a_{kj}.

q_4	NN	0	0	.000000002	0	4.8222e-13
q_3	TO	0	0	0	.0000018	0
q_2	VB	0	0	.00053	0	1.7928e-10
q_1	PRP	0	.025	0	0	0
q_0	start	1.0				
		<s></s>	I	want	to	race
			W1	W2	W3	W4

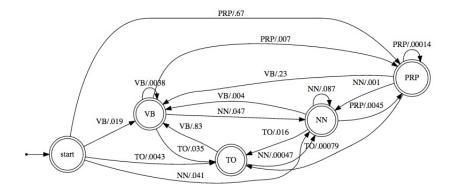

• For each state
$$q_j$$
 at time i , compute $v_i(j) = \max_{k=1}^n v_{i-1}(k) a_{kj} b_j(w_i)$

- v_{i-1}(k) is previous Viterbi path probability, a_{kj} is transition probability, and b_j(w_i) is emission probability.
- There's also an (implicit) backpointer from cell (i, j) to the relevant (i 1, k), where k maximizes v_{i-1}(k)a_{kj}.

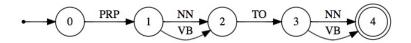

http://nlp.stanford.edu:8080/parser/

- Relies both on "distributional" and "morphological" criteria
- Uses a model similar to hidden Markov models

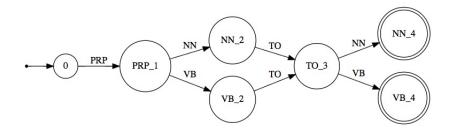
Input as an FST



Emission table as an FST


Notice the weights on the FST

Transition table as an FST


Input fst composed with emission fst

Input fst composed with emission fst

... Composed with transition fst

... Composed with transition fst

Rather than generate tag conditioned on previous tag, generate word conditioned on previous word.

Rather than generate tag conditioned on previous tag, generate word conditioned on previous word.

Bigrams:

Months the my and issue of year foreign new exchanges september were recession exchange new endorsed a acquire to six executives Rather than generate tag conditioned on previous tag, generate word conditioned on previous word.

Bigrams:

Months the my and issue of year foreign new exchanges september were recession exchange new endorsed a acquire to six executives

Trigrams:

Last December through the way to preserve the Hudson corporation N. B. E. C. Taylor would seem to complete the maj or central planners one point five percent of U. S. E. has already old M. X. corporation of living on information such as more frequently fishing to keep her.

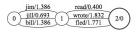
4-grams:

They also point to ninety nine point six billion dollars from two hundred four oh six three percent of the rates of interest stores as Mexico and Brazil on market conditions.

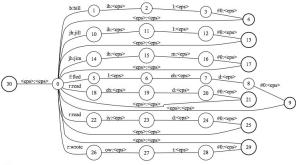
4-grams:

They also point to ninety nine point six billion dollars from two hundred four oh six three percent of the rates of interest stores as Mexico and Brazil on market conditions.

This basic idea is fundamental in any system that generates language: machine translation, speech recognition, optical character recognition, image captioning.

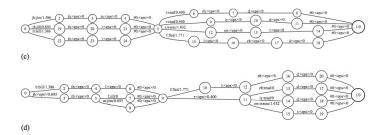

As we've just seen, can be (and is) implemented as a very large weighted FST!

Task: convert soundwaves to corresponding text.


Intuition: both sound and text are (noisy) representations of the same underlying set of **phonemes**.

Mapping from words to phonemes is just transduction! (From phonemes to sound, signal processing). Coupled with a very large language model...

Speech recognition transducers (1)


(a)

(b)

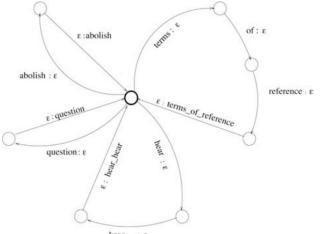
(a) Language model; (b) Phonemes to words

Speech recognition transducers (1)

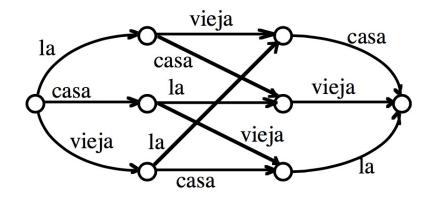
(c) Composition of the LM and phoneme to word transducer; (d) Determinisation of c.

watashi wa hako wo akemasu \rightarrow I open the box

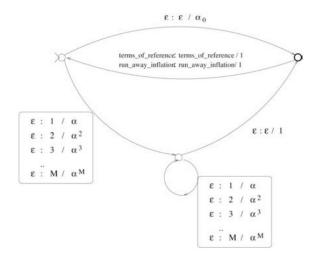
(Japanese gloss: "I the box open", with two case markers)

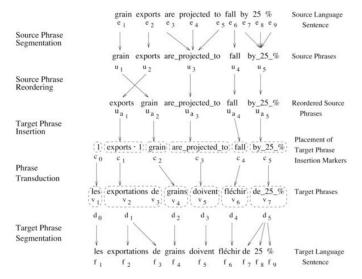

Two basic operation of a machine translation system:

- substitute words or sequences of words.
- permute word sequences.


Machine translation models

Course Diagonal	grain exports are projected to fall by 25 % e_1 e_2 e_3 e_4 e_5 e_6 e_7 e_8 e_9	Source Language Sentence
Source Phrase Segmentation		
	grain exports are_projected_to fall by_25_%	Source Phrases
	u ₁ u ₂ u ₃ u ₄ u ₅	
Source Phrase Reordering	\times \downarrow \downarrow \downarrow	
		Reordered Source
	$u_{a_1} u_{a_2} u_{a_3} u_{a_4} u_{a_5}$	Phrases
Target Phrase Insertion		
	(1) exports · 1) grain are_projected_to; fall (by_25_%)	Placement of Target Phrase
	$c_0 c_1 c_2 c_3 c_4 c_5$	Insertion Markers
Phrase		
Transduction		
	les exportations de grains doivent fléchir de_25_% v_1 v_2 v_3 v_4 v_5 v_6 v_7	Target Phrases
	d_0 d_1 d_2 d_3 d_4 d_5	
Target Phrase		
Segmentation		
0	les exportations de grains doivent fléchir de 25 %	Target Language
	f_1 f_2 f_3 f_4 f_5 f_6 f_7 f_8 f_9	Sentence
	1 2 3 4 5 6 7 8 9	


The segmentation transducer


The permutation transducer

The insertion transducer

Machine translation models (again)

Every step can be encoded as an FST. Compose and run Viterbi!

A search on Google scholar for "finite state transducers" leads to over 200,000 results.

Other applications for natural language:

- Named entity recognition
- Text normalisation
- Information extraction

FSTs are modular (can break the problem into different sub-problems and cascade the resulting FSTs together), highly efficient and are simple to understand and work with.

Takeaways:

- Viterbi algorithm
- Weighted finite state transducers are incredibly useful!

Next week: parsing natural language.