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1 Probabilities in PCFGs

2 Agreement phenomena

3 Types in Semantics
Types of entities
Subtypes in NL
Types as selectional restrictions

Reading:

J&M 2nd edition, ch. 14.2–14.6,
NLTK Book, Chapter 8, final section on Weighted
Grammar.

2 / 34



Parsing in the News

(All over tech news outlets, May 2016)
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Example PCFG

S → NP VP [.80] Det → the [.10]
S → Aux NP VP [.15] Det → a [.90]
S → VP [.05] Noun→ book [.10]
NP → Pronoun [.35] Noun→ flight [.30]
NP → Proper -Noun [.30] Noun→ dinner [.60]
NP → Det Nominal [.20] Proper -Noun→ Houston [.60]
NP → Nominal [.15] Proper -Noun→ NWA [.40]
Nominal → Noun [.75] Aux → does [.60]
Nominal → Nominal Noun [.05] Aux → can [.40]
VP → Verb [.35] Verb → book [.30]
VP → Verb NP [.20] Verb → include [.30]
VP → Verb NP PP [.10] Verb → prefer [.20]
VP → Verb PP [.15] Verb → sleep [.20]

Where do the probabilities come from?
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Parameter Estimation

In a PCFG every rule is associated with a probability.
But where do these rule probabilities come from?

Use a large parsed corpus such as the Penn Treebank.

( (S

(NP-SBJ (DT That) (JJ cold)

(, ,)

(JJ empty) (NN sky) )

(VP (VBD was)

(ADJP-PRD (JJ full)

(PP (IN of)

(NP (NN fire)

(CC and)

(NN light) ))))

(. .) ))

S → NP-SBJ VP
VP → VBD ADJP-PRD
PP → IN NP
NP → NN CC NN
etc.
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Parameter Estimation

Corpus of parsed sentences:

’S1: [S [NP grass] [VP grows]]’
’S2: [S [NP grass] [VP grows] [AP slowly]]’
’S3: [S [NP grass] [VP grows] [AP fast]]’
’S4: [S [NP bananas] [VP grow]]’

Construct PCFG:

r Rule α Count
r1 S → NP VP S 2
r2 S → NP VP AP S 2

What should be the probability for r1?

1 1

2 1/2

3 1/4
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Parameter Estimation: Intuition

Suppose that we have a bag containing two types of marbles: red
and black. How would you estimate the ratio of red to black
marbles in the bag?

More precisely, what is p(red)? (Note: p(black) = 1− p(red)).

Experiment. Draw ten marbles from the bag (replacing them each
time). Suppose you draw 7 red and 3 black marbles. What is
p(red)?

1 .3

2 .5

3 .7

4 1

Why?
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Parameter Estimation: Maximum Likelihood

Since we saw 7 red and 3 black marbles, we can write the likelihood
of the observed data in terms of the unknown parameter p(red):

p(data) = p(red)7 × (1− p(red))3 (1)

p(red) is unknown. What’s a reasonable way to set it?

How about this?

arg max
p(red)∈[0,1]

p(data) = p(red)7 × (1− p(red))3 (2)
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Parameter Estimation: Maximum Likelihood

Now we have a basic calculus problem. Solve:

arg max
p(red)∈[0,1]

p(data) = p(red)7 × (1− p(red))3 (3)

What p(data) looks like:

9 / 34



Maximum Likelihood Estimation

MLE is one of the most basic parameter estimation methods.
When you have lots of data, it’s a reasonable first choice.

What are some cases where it might not work?

Question. What if you don’t have lots of data (for the parameter
you want to estimate)?
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Parameter Estimation

Corpus of parsed sentences:

’S1: [S [NP grass] [VP grows]]’
’S2: [S [NP grass] [VP grows] [AP slowly]]’
’S3: [S [NP grass] [VP grows] [AP fast]]’
’S4: [S [NP bananas] [VP grow]]’

Compute PCFG probabilities:

r Rule α P(r |α)
r1 S → NP VP S 2/4
r2 S → NP VP AP S 2/4
r3 NP → grass NP 3/4
r4 NP → bananas NP 1/4
r5 VP → grows VP 3/4
r6 VP → grow VP 1/4
r7 AP → fast AP 1/2
r8 AP → slowly AP 1/2
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Parameter Estimation

In a PCFG every rule is associated with a probability.
But where do these rule probabilities come from?

Use a large parsed corpus such as the Penn Treebank.

Obtain grammar rules by reading them off the trees.

Calculate number of times LHS → RHS occurs over number
of times LHS occurs.

P(α→ β|α) =
Count(α → β)∑
γ Count(α → γ)

=
Count(α → β)

Count(α)
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Parameter Estimation

With these parameters (rule probabilities), we can now compute
the probabilities of the four sentences S1–S4:

P(S1) = P(r1|S)P(r3|NP)P(r5|VP)
= 2/4 · 3/4 · 3/4 = 0.28125

P(S2) = P(r2|S)P(r3|NP)P(r5|VP)P(r7|AP)
= 2/4 · 3/4 · 3/4 · 1/2 = 0.140625

P(S3) = P(r2|S)P(r3|NP)P(r5|VP)P(r7|AP)
= 2/4 · 3/4 · 3/4 · 1/2 = 0.140625

P(S4) = P(r1|S)P(r4|NP)P(r6|VP)
= 2/4 · 1/4 · 1/4 = 0.03125
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Motivation behind such estimation

One criterion for finding rule weights of a PCFG (or parameters in
general) is the maximum likelihood criterion.

It means we want to find rule weights which make the treebank we
observe most likely if we multiply in all probabilities together (we
assume the trees are independent)

Counting and normalising satisfies this criterion
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Type-related phenomena in NL

We’ve met the concept of types in programming languages,
along with the idea of typing constraints on programs.

Types also play a variety of roles in NL: e.g.

for disambiguation (via selectional restrictions),
for NL semantics (as in upcoming lecture).

Furthermore, some phenomena that would be typically
handled via types in a PL context (notably agreement) are
often handled in other ways in NL.

We’ll briefly survey this material in this lecture.
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Agreement phenomena

In PLs, typing rules enforce type agreement between different
(often separated) constituents of a program:

int i=0; ...; if (i>2) ...

There are somewhat similar phenomena in NL: constituents of a
sentence (often separated) may be constrained to agree on an
attribute such as person, number, gender.

You, I imagine, are unable to attend.

The hills are looking lovely today, aren’t they?

He came very close to injuring himself.
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Agreement in various languages

These examples illustrate that in English:

Verbs agree in person and number with their subjects;

Tag questions agree in person, number, tense and mode with their
main statement, and have the opposite polarity.

Reflexive pronouns follow suit in person, number and gender.

French has much more by way of agreement phenomena:

Adjectives agree with their head noun in gender and number.

Le petit chien, La petite souris, Les petites mouches

Participles of être verbs agree with their subject:

Il est arrivé, Elles sont arrivées

Participles of other verbs agree with preceding direct objects:

Il a vu la femme, Il l’a vue

How can we capture these kinds of constraints in a grammar?
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Agreement rules: why bother?

Modelling agreement is obviously important if we want to generate
grammatically correct NL text.

But even for understanding input text, agreement can be useful for
resolving ambiguity.
E.g. the following sentence is ambiguous . . .

The boy who eats flies ducks.

. . . whilst the following are less so:

The boys who eat fly ducks.
The boys who eat flies duck.
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Node-splitting via attributes

One solution is to refine our grammar by splitting certain
non-terminals according to various attributes. Examples of
attributes and their associated values are:

Person: 1st, 2nd, 3rd

Number: singular, plural

Gender: masculine, feminine, neuter

Case: nominative, accusative, dative, . . .

Tense: present, past, future, . . .

In principle these are language-specific, though certain common
patterns recur in many languages.

We can then split phrase categories as the language demands, e.g.

Split NP on person, number, case (e.g. NP[3,sg,nom]),

Split VP on person, number, tense (e.g. VP[3,sg,fut]).
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Parameterized CFG productions

We can often use such attributes to enforce agreement constraints.
This works because of the head phrase structure typical of NLs.
E.g. we may write parameterized rules such as:

S → NP[p,n,nom] VP[p,n]
NP[3,n,c] → Det[n] Nom[n]

Each of these really abbreviates a finite number of rules obtained
by specializing the attribute variables. (Still a CFG!)
When specializing, each variable must take the same value
everywhere, e.g.

S → NP[3,sg,nom] VP[3,sg]
S → NP[1,pl,nom] VP[1,pl]

NP[3,pl,acc] → Det[pl] Nom[pl]

Parsing algorithms can be adapted to work with this machinery:
don’t have to ‘build’ all the specialized rules individually.
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Example: subject-verb agreement in English

S → NP[p,n,nom] VP[p,n]
NP[p,n,c] → Pro[p,n,c]

Pro[1,sg,nom] → I, etc.
Pro[1,sg,acc] → me, etc.

NP[3,n,c] → Det[n] Nom[n] RelOpt[n]
Nom[n] → N[n] | Adj Nom[n]

N[sg] → person, etc.
N[pl] → people, etc.

RelOpt[n] → ε | who VP[3,n]
VP[p,n] → VV[p,n] NP[p’,n’,acc]
VV[p,n] → V[p,n] | BE[p,n] VG
V[3,sg] → teaches, etc.

BE[p,n] → is, etc.
VG → teaching, etc.

(Other rules omitted.)
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Some disadvantages of rule splitting for agreement

There is a huge proliferation of primitive grammatical categories

Example

Non3sgVPto, NPmass, 3sgNP, Non3sgAux, ...

This leads to a large number of grammar rules and a loss of
generality in the grammar

A fix: constraint-based representation scheme based on unification
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Feature Structures

Defined in terms of attribute-value matrices (AVMs):

subj


pers 3

num sg

gend masc

pred pro


pred eat〈SUBJ, OBJ〉

obj


pers 3

num pl

gend fem

pred pro




Nested set of attributes
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How to use Feature Structures?

Each lexical rule is attached with a lexical AVM

Example

Det → this [Det AGREEMENT [ NUMBER Sg ] ]
Det → these [Det AGREEMENT [ NUMBER Pl ] ]
Aux → do [Det AGREEMENT [ NUMBER Pl, PERSON 3rd ] ]
Aux → does [Det AGREEMENT [ NUMBER Sg, PERSON 3rd ] ]

Grammar rules are specified with constraints and copying
instructions

Example

VP → Verb NP [VP AGREEMENT] = [Verb AGREEMENT]
NP → Det Nominal [NP HEAD] = [Nominal Head]

[Det HEAD AGREEMENT]
= [Nominal HEAD AGREEMENT]
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Parsing with Feature Structures

Whenever phrases are conjoined, for example, two phrases in the
CYK parser, we do feature unification.

This means we check whether we satisfy the constraints attached
to the rule, and if so, when we create the new phrase, we also
create a new feature structure for it

Unification is not a trivial algorithm because the attribute-values
can be shared in an AVM, using pointers
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Example of Shared Attributes



CAT VP

AGREEMENT 1

HEAD

AGREEMENT 1

PERSON 3

NUMBER SG

GENDER MASC





The 1 refers to the same sub-AVM
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Types in Natural Language Semantics

Types are also very useful if we wish to describe the semantics (i.e.,
meaning) of natural languages. For example, we can use types
employed in logic to model the meanings of various phrase types.

Basic Types

1 e — the type of real-world entities such as Inf2a, Stuart, John.

2 t — the type of facts with truth value like ‘Inf2a is amusing’.

From these two basic types, we may construct more complex types
via the function type constructor.
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From basic to complex formal types

Where PL people write σ → τ , NL people often write < σ, τ >. E.g.:

<e,t>: unary predicates – functions from entities to facts.

<e, <e,t>>: binary predicates – functions from entities to unary
predicates.

<<e,t>, t>: type-raised entities – functions from unary
predicates to truth values.

Inf2a, Stuart : e
enjoys : <e, <e,t>>
enjoys Inf2a, is amusing : <e,t>
Inf2a is amusing, Stuart enjoys Inf2a : t
every student : <<e,t>, t>

This simple system of types will be enough to be going on with
(see Lecture 24). But for more precise semantic modelling, a much
richer type system is desirable.
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Different types of entities in NL

We can distinguish those entities we can count and those we can’t:

◦ A student kept a chicken in her room.
◦ A student kept two chickens in her room.
◦ I ate rice and drank milk.
◦ *I ate two rices and drank two milks.

individuals (things we can count): one student, two students,
one chicken, many chickens, one room, many rooms

mass (things we can’t count): rice, milk
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Subtypes in NL

hamburger <: sandwich <: food item <: food

<: substance <: matter <: physical entity <: entity

To deal with meanings in NL, more fine-grained classifications
(of varying levels of specificity) are often useful.

There are also many other more abstract types of entities to
which a NL expression may refer: e.g., locations, points in
time, time spans, events, beliefs, desires, possibilities, . . .

This leads to a vast system of subtypes capturing information
about real-world concepts and their relationships.
(Cf. the WordNet database.)
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Selectional restrictions

We can often characterize verbs and other predicates in terms of
their selectional restrictions — constraints on the type of entities
or expression can serve as their arguments.

I want to eat somewhere close to Appleton Tower.

I want to eat something close to Thai food.

How do we know that Thai food is the object of the eating event
in the second sentence, and that somewhere close to AT is the
location of the eating event in the first?

The object of eating is usually something edible: Its semantic
type is edible things.

The location of an event is usually a place: Its semantic type
is location.
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Selectional restrictions

Selectional restrictions are associated with word senses, not words:

Do any international airlines serve vegan meals?
(ie, provide food or drink)

Do any international airlines serve Edinburgh?

(ie, provide a service)

?? Do any international airlines serve Edinburgh and vegan
meals?

Selectional restrictions vary in their specificity:

object(imagine): a situation
object(diagonalise): a matrix

⇒ Verbs vary in the specificity of their argument types.
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Selectional restrictions and type coercion

Selectional restrictions can change the way we interpret a term:

Jane Austen wrote ‘Emma’.

I used to read Jane Austen a lot.

The chicken was domesticated in Asia.

The chicken was overcooked.

Metonymy is when the referent of a term changes to a related
entity, often associated with the demands of a verb’s selectional
restrictions.
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Summary

Many agreement phenomena in NL can be modelled using
CFGs with attributes.

Type systems are also useful in semantic modelling.

To capture selectional restrictions associated with verb
arguments, a very rich system of subtypes is desirable.

Type coercion is common in Natural Language: changing the
type (and often the referent) of an expression to one that fits
the verb (predicate) to which it serves as an argument.
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