
String and pattern matching

Applications to string and pattern matching
Informatics 2A: Lecture 6

John Longley

School of Informatics
University of Edinburgh
jrl@inf.ed.ac.uk

30 September 2016

1 / 16

jrl@inf.ed.ac.uk

String and pattern matching

Recap of Lecture 5

Regular languages are closed under the operations of
concatenation and Kleene star.

This is proved using ε-NFAs, which can be easily converted to
ordinary NFAs.

Regular expressions provide a textual representation of regular
languages.

Kleene’s Theorem: regular expressions define exactly the
regular languages.

The difficult direction of the theorem, that every regular
language is defined by some regular expression, can be proved
using Kleene algebra to solve a system of simultaneous
equations, exploiting Arden’s Rule.

2 / 16

String and pattern matching

Applications of regular language technology

In this lecture and the next, we’ll look at several practical
applications of the theory we’ve covered:

efficient string searching

more general pattern searching

data validation, e.g. for XML documents

lexical analysis for computer languages (first stage of the
language processing pipeline)

automated verification of safety and liveness properties for
complex interacting systems — typically via model checking.

Further applications will be discussed in the Natural Language part
of the course.

3 / 16

String and pattern matching
grep and its friends
How they work

String and pattern matching with Grep tools

Important practical problem: Search a large file (or batch of files)
for specific strings, or strings of a certain form.

Most UNIX/Linux-style systems since the ’70s have provided a
bunch of utilities for this purpose, known as Grep (Global Regular
Expression Print).

Extremely useful and powerful in the hands of a practised user.
Make serious use of the theory of regular languages.

Typical uses:

grep "[0−9]*\.[0−9][0−9]" document.txt

egrep "(^|[^a−zA−Z])[tT]he([^a−zA−Z]|$)" document.txt

−− searches for prices in pounds and pence

−− searches for occurrences of the word "the"

4 / 16

String and pattern matching
grep and its friends
How they work

grep, egrep, fgrep

There are three related search commands, of increasing generality
and correspondingly decreasing speed:

fgrep searches for one or more fixed strings, using an efficient
string matching algorithm.

grep searches for strings matching a certain pattern (a simple
kind of regular expression).

egrep searches for strings matching an extended pattern
(these give the full power of regular expressions).

All three of these make use of the ideas we’ve been studying.

5 / 16

String and pattern matching
grep and its friends
How they work

Efficient string matching

Suppose we want to search for occurrences of a shortish string s in
a very long document D.

Obvious method: For each position p within D, check whether
there’s an occurrence of s starting at p, by working through s one
character at a time until:

either there’s a character mismatch

or we reach the end of s (search successful).

(Example on next slide.)

Can we do better?

6 / 16

String and pattern matching
grep and its friends
How they work

Naive string search: an example

Suppose we’re searching for nano within a long document D
containing nanobananas.

n a n o b a n a n a s
n a n X

X
n X

X
X

X
n a n X

X
n a X

X
X

Notice that several characters in D are visited more than once.

7 / 16

String and pattern matching
grep and its friends
How they work

Better method: The Knuth-Morris-Pratt algorithm

The following NFA clearly accepts all strings ending in nano:

0 1 2

any char

n a n o
3 4

So we can . . .

1 First convert this to an equivalent DFA M. (Costs some
time—but worth it if s is short and D is very long.)

2 Run D through M. (Each character of D processed just once;
no buffering required.)

3 Every time we enter an accepting state of M, signal a hit.

8 / 16

String and pattern matching
grep and its friends
How they work

The corresponding DFA

0
n a n o

01 02 013 04

not n

not n

a

n

n

not n,a,o

not n

not n,a
n

For NFAs of this kind, the subset construction behaves nicely:
no state explosion. Can even optimize the construction a bit
for this class of NFAs.

Useful in practice for documents with a lot of repetition.
E.g. imagine searching for www.inf.ed.ac.uk/inf2a/ in a
long list of web addresses, where most begin with www. and
many begin with www.inf.ed.ac.uk/

9 / 16

String and pattern matching
grep and its friends
How they work

Multiple strings

Suppose now we want to find all occurrences of any of the strings
nano, micro, milli in D.

No problem! Just do the same starting from the following NFA:

a n o

n

any char

m i c r o

m

i l l i

(The gain over the naive method is here readily apparent.)

To do more powerful searches, can use regular expressions . . .

10 / 16

String and pattern matching
grep and its friends
How they work

Machine syntax for regular expressions

a Single character
[abc] Choice of characters
[A-Z] Any character in ASCII range
[̂ Ss] Any character except those given
. Any single character
,̂ $ Beginning, end of line
* zero or more occurrences of preceding pattern
? optional occurrence of preceding pattern
+ one or more occurrences of preceding pattern
| choice between two patterns (‘union’)

(N.B. The last three of these are specific to egrep.)

This kind of syntax is very widely used. In Perl/Python (including
NLTK), patterns are delimited by /.../ rather than "...".

11 / 16

String and pattern matching
grep and its friends
How they work

Mathematical versus machine notation

We’ve now seen two notations for writing regular expressions:

Mathematical notation, e.g. (a + b)(a + b)∗. This notation is
intended to have as few operations as possible, for
convenience in setting up the theory (e.g. Kleene algebra).

Machine notation (regex), e.g. (a|b)+. This has a more
generous set of operations, for convenience when writing
complicated regular expressions.

The clashes between these are unfortunate, but we’re stuck with
them.

Union of two languages is written using | in machine syntax,
and + in mathematical syntax.

In machine syntax, + is a unary operation representing
concatenation of one or more strings of a given form.

Dot . means concatenation in the mathematical syntax, and
‘any character’ in the machine syntax.

12 / 16

String and pattern matching
grep and its friends
How they work

Example

How suitable are the patterns below for specifying the form of
non-negative decimal integers?

1 [0-9]*

2 [0-9]+

3 0 | [1-9][0-9]*

4 0 | [1-9][0-9]?[0-9]?(,[0-9][0-9][0-9])*

Answer: Pattern 1 is bad, because it admits the empty string.
Pattern 2 is fine if we don’t mind leading zeros, e.g. 023.
Pattern 3 is just right for non-neg integers without leading zeros.
Pattern 4 is good for a common way of writing integers within
English text, e.g. 1,024 or 578,000,000,000.

13 / 16

String and pattern matching
grep and its friends
How they work

Example

How suitable are the patterns below for specifying the form of
non-negative decimal integers?

1 [0-9]*

2 [0-9]+

3 0 | [1-9][0-9]*

4 0 | [1-9][0-9]?[0-9]?(,[0-9][0-9][0-9])*

Answer: Pattern 1 is bad, because it admits the empty string.
Pattern 2 is fine if we don’t mind leading zeros, e.g. 023.
Pattern 3 is just right for non-neg integers without leading zeros.
Pattern 4 is good for a common way of writing integers within
English text, e.g. 1,024 or 578,000,000,000.

13 / 16

String and pattern matching
grep and its friends
How they work

How egrep (typically) works

egrep will print all lines containing a match for the given pattern.
How can it do this efficiently?

Every machine regexp is clearly equivalent to a mathematical
one.

So we can convert a pattern into a (smallish) NFA.

(More precisely, the number of states of the NFA grows
linearly in the length of the regular expression.)

We then run the NFA , using the just-in-time simulation
discussed in Lecture 4.

We don’t determinize the NFA to construct the full DFA,
because of the potential exponential state-space blow-up.

grep can be a bit more efficient, exploiting the fact that there’s
‘less non-determinism’ around in the absence of +, ?, |.

14 / 16

String and pattern matching
grep and its friends
How they work

Regular expressions in data validation

Regexp’s are used not just in searching, but also in checking
whether data is of the expected form:

Within DTDs for XML, can enforce constraints on parts of
the data:

<!ELEMENT name (first | family | initial)+ >

<!ELEMENT first (#PCDATA) >

<!ELEMENT family (#PCDATA) >

<!ELEMENT initial (#PCDATA) >

For text fields in web forms, check that the input text has the
correct form. (See regexlib.com for hundreds of regexp’s for
validating email addresses, URLs, UK mobile phone numbers,
postcodes, . . .)

15 / 16

String and pattern matching
grep and its friends
How they work

Challenge question

Regular expressions and the pattern language have operations that
correspond to the closure of regular languages under union,
concatenation and Kleene star.

However, we have seen other closure properties of regular
languages too: closure under intersection and complement.

Question: Why do regular expressions and patterns not include
operations for intersection and complement?

Answer: The natural constructions for intersection and complement work
on DFAs, not NFAs. So to build an acceptor for e.g. the complement of a
given language, we’d first have to apply the subset construction, which
risks a state space explosion. The design of the regex language is
designed to protect the unwary user from such nasty surprises.

16 / 16

String and pattern matching
grep and its friends
How they work

Challenge question

Regular expressions and the pattern language have operations that
correspond to the closure of regular languages under union,
concatenation and Kleene star.

However, we have seen other closure properties of regular
languages too: closure under intersection and complement.

Question: Why do regular expressions and patterns not include
operations for intersection and complement?

Answer: The natural constructions for intersection and complement work
on DFAs, not NFAs. So to build an acceptor for e.g. the complement of a
given language, we’d first have to apply the subset construction, which
risks a state space explosion. The design of the regex language is
designed to protect the unwary user from such nasty surprises.

16 / 16

	String and pattern matching
	grep and its friends
	How they work

