Regular expressions and Kleene's theorem

Informatics 2A: Lecture 5

John Longley

School of Informatics
University of Edinburgh
jrle@inf.ed.ac.uk

29 September 2016

1/21


jrl@inf.ed.ac.uk

@ More closure properties of regular languages
@ Operations on languages
@ «-NFAs
@ Closure under concatenation and Kleene star

© Regular expressions
@ Regular expressions
@ From regular expressions to regular languages

© Kleene's theorem and Kleene algebra
o Kleene's theorem
o Kleene algebra
@ From DFAs to regular expressions

2/21



More closure properties of regular languages Operations on languages
e-NFAs
Closure under concatenation and Kleene star

Concatenation

We write Li.L, for the concatenation of languages L; and L,
defined by:

Li.ly = {xy|x¢€l,yecls}

For example, if L1 = {aaa} and Ly = {b, c} then Li.L; is the
language {aaab, aaac}.

Later we will prove the following closure property.

If Ly and Ly are regular languages then so is Ly.L;.

3/21



More closure properties of regular languages Operations on languages
e-NFAs
Closure under concatenation and Kleene star

Kleene star

We write L* for the Kleene star of the language L, defined by:

I* ={efuUluUlLLULLLU...

For example, if L3 = {aaa, b} then L} contains strings like aaaaaa,
bbbbb, baaaaaabbaaa, etc.

More precisely, L3 contains all strings over {a, b} in which the
letter a always appears in sequences of length some multiple of 3

Later we will prove the following closure property.

If L is a regular language then so is L*.

4/21



More closure properties of regular languages Operations on languages
e-NFAs
Closure under concatenation and Kleene star

Exercise

Consider the language over the alphabet {a, b, c}
L = {x | x starts with a and ends with c}

Which of the following strings are valid for the language L.L 7?
© abcabc

Q acacac
© abcbcac
(4]

abcbacbce

5/21



More closure properties of regular languages Operations on languages
e-NFAs
Closure under concatenation and Kleene star

Exercise

Consider the language over the alphabet {a, b, c}
L = {x | x starts with a and ends with c}

Which of the following strings are valid for the language L.L 7?
© abcabc

Q acacac
© abcbcac
(4]

abcbacbce

Answer: 1,2,3 are valid, but 4 isn't. (To split the string into two
L-strings, we'd need c followed by a.)

5/21



More closure properties of regular languages Operations on languages
e-NFAs
Closure under concatenation and Kleene star

Another exercise

Consider the (same) language over the alphabet {a, b, c}
L = {x | x starts with a and ends with c}

Which of the following strings are valid for the language L* 7
Q ¢

Q acaca
© abcbc

@ acacacacac

6/21



More closure properties of regular languages Operations on languages
e-NFAs
Closure under concatenation and Kleene star

Another exercise

Consider the (same) language over the alphabet {a, b, c}
L = {x | x starts with a and ends with c}

Which of the following strings are valid for the language L* 7
Q ¢

Q acaca
© abcbc

@ acacacacac

Answer: 1,3,4 are valid, but not 2. (In this particular case, it so
happens that L* = L + {€}, but this won't be true in general.)

6/21



More closure properties of regular languages Operations on languages
e-NFAs
Closure under concatenation and Kleene star

NFAs with e-transitions

We can vary the definition of NFA by also allowing transitions
labelled with the special symbol € (not a symbol in ¥).

The automaton may (but doesn’t have to) perform a spontaneous
e-transition at any time, without reading an input symbol.

This is quite convenient: for instance, we can turn any NFA into an
e-NFA with just one start state and one accepting state:

(Add e-transitions from new start state to each state in S, and
from each state in F to new accepting state.)
7/21



More closure properties of regular languages Operations on languages
e-NFAs
Closure under concatenation and Kleene star

Equivalence to ordinary NFAs

Allowing e-transitions is just a convenience: it doesn’t
fundamentally change the power of NFAs.

If N=(Q,A,S,F)is an e-NFA, we can convert N to an ordinary
NFA with the same associated language, by simply ‘expanding’ A
and S to allow for silent e-transitions.

To achieve this, perform the following steps on N.
@ For every pair of transitions g = ¢’ (where a € ¥) and
LN/ e a . _n
q’ — ¢”, add a new transition g = q".
o For every transition g — ¢, where g is a start state, make ¢’
a start state too.
Repeat the two steps above until no further new transitions or new
start states can be added.

Finally, remove all e-transitions from the e-NFA resulting from the

above process. This produces the desired NFA.
8/21



More closure properties of regular languages Operations on languages
e-NFAs
Closure under concatenation and Kleene star

Closure under concatenation

We use e-NFAs to show, as promised, that regular languages are
closed under the concatenation operation:

Li.l, = {xy | X € Ll,y S Lz}

If L1, Ly are any regular languages, choose e-NFAs Ny, N> that
define them. As noted earlier, we can pick Ny and N, to have just
one start state and one accepting state.

Now hook up N; and N like this:

N2 (D)

Clearly, this NFA corresponds to the language Lj.L;.

9/21



More closure properties of regular languages Operations on languages
e-NFAs
Closure under concatenation and Kleene star

Closure under Kleene star

Similarly, we can now show that regular languages are closed under
the Kleene star operation:

I* ={efulUlLlLULLLU...

For suppose L is represented by an e-NFA N with one start state
and one accepting state. Consider the following e-NFA:

Clearly, this e-NFA corresponds to the language L*.

10/21



Regular expressions

Regular expressions .
From regular expressions to regular languages

Regular expressions

We've been looking at ways of specifying regular languages via
machines (often presented as pictures). But it's very useful for
applications to have more textual ways of defining languages.

A regular expression is a written mathematical expression that
defines a language over a given alphabet .
@ The basic regular expressions are

0 € a (foraekx)

@ From these, more complicated regular expressions can be built
up by (repeatedly) applying the two binary operations +, .
and the unary operation * . Example: (a.b+ €)* + a

We use brackets to indicate precedence. In the absence of brackets,
* binds more tightly than ., which itself binds more tightly than +.

So a+b.a" means a+ (b.(a%))

Also the dot is often omitted: ab means a.b 11721



Regular expressions

Regular expressions 5
From regular expressions to regular languages

How do regular expressions define languages?

A regular expression is itself just a written expression. However,
every regular expression o over ¥ can be seen as defining an actual
language L£(a) € X* in the following way.

L@)=0. L(e)={e}, L(a)={a}.
Lo+ ) = L{) U L(P)

L(.f) = L(a) . L(B)

L(a*) = L(a)*

Example: a + ba* defines the language {a, b, ba, baa, baaa, . . .}.
The languages defined by (, €, a are obviously regular.

What's more, we've seen that regular languages are closed under
union, concatenation and Kleene star.

This means every regular expression defines a regular language.

(Formal proof by induction on the size of the regular expression.)
12/21



Regular expressions

Regular expressions 5
From regular expressions to regular languages

Exercises

Consider (again) the language
{x € {0,1}" | x contains an even number of 0's}

Which of the following regular expressions define the above
language?

Q (1701701%)*
@ (1*01%0)*1*
o 1*(0170)*1*
O (1+01%0)*

13/21



Regular expressions

Regular expressions 5
From regular expressions to regular languages

Exercises

Consider (again) the language
{x € {0,1}" | x contains an even number of 0's}

Which of the following regular expressions define the above
language?

Q (1701701%)*
@ (1*01%0)*1*
o 1*(0170)*1*
O (1+01%0)*

Answer: 2 and 4 define the required language. 1 doesn't: e.g. 11
doesn’t match the expression. 3 doesn’t: e.g. 00100 doesn’'t match
the expression.

13/21



Kleene's theorem
Kleene algebra
Kleene's theorem and Kleene algebra From DFAs to regular expressions

Kleene's theorem

We've seen that every regular expression defines a regular language.

Remarkably, the converse is also true: every regular language can
be defined by a regular expression.

The equivalence between regular languages and expressions is:

Kleene's theorem
DFAs and regular expressions give rise to exactly the
same class of languages (the regular languages).

(For proof, see Kozen, Lecture 9.)
As we've already seen, NFAs (with or without e-transitions) also
give rise to this class of languages.

So the evidence is mounting that the class of regular languages is
mathematically a very natural and well-behaved one.

14/21



Kleene's theorem
Kleene algebra
Kleene's theorem and Kleene algebra From DFAs to regular expressions

Kleene algebra

Regular expressions give a textual way of specifying regular
languages. This is useful e.g. for communicating regular languages
to a computer.

Another benefit: regular expressions can be manipulated using
algebraic laws (Kleene algebra). For example:

at(B+v) = (a+8)+7v at+f = fta
a—l—@ = « at+a = «
a(fy) = (aB)y €x = a€ = «
af+7v) = af+ay (a4 8y = ay+py
ba = o =0 €e+aa* = e+a‘a=a*

Often these can be used to simplify regular expressions down to
more pleasant ones.

15/21



Kleene's theorem
Kleene algebra
Kleene's theorem and Kleene algebra From DFAs to regular expressions

Other reasoning principles

Let's write @ < 3 to mean L(«) C L(f) (or equivalently
a+ p=p). Then
ay+B<y = a'B<y
B+ya<~y = Pa* <~y
Arden’s rule: Given an equation of the form X = aX + 3, its
smallest solution is X = o .
What's more, if € ¢ L(«), this is the only solution.
Beautiful fact: The rules on this slide and the last form a complete

set of reasoning principles, in the sense that if £(«) = £(/3), then
‘o = (" is provable using these rules. (Beyond scope of Inf2A.)

16/21



Kleene's theorem
Kleene algebra
Kleene's theorem and Kleene algebra From DFAs to regular expressions

DFAs to regular expressions

We use an example to show how to convert a DFA to an
equivalent regular expression.

1 1
() o 8
@CO
For each state r, let the variable X, stand for the set of strings

that take us from r to an accepting state. Then we can write some
simultaneous equations:

Xp = 1X,+0X;+ €
Xq = 1Xg+0X,

17/21



Kleene's theorem
Kleene algebra
Kleene's theorem and Kleene algebra From DFAs to regular expressions

Where do the equations come from?

Consider:
Xp = 1X, +0X, + €

This asserts the following.

Any string that takes us from p to an accepting state is:

@ a 1 followed by a string that takes us from p to an accepting
state; or

@ a 0 followed by a string that takes us from g to an accepting
state; or

@ the empty string.

Note that the empty string is included because p is an accepting
state.

18/21



Kleene's theorem
Kleene algebra
Kleene's theorem and Kleene algebra From DFAs to regular expressions

Solving the equations

We solve the equations by eliminating one variable at a time:

Xq = 170X, by Arden’s rule
So X, = 1X,+01"0X,+€
= (1+0170)X, +€
So X, = (1+01%0)" by Arden’s rule

Since the start state is p, the resulting regular expression for X, is
the one we are seeking. Thus the language recognised by the
automaton is:

(1+0170)*

The method we have illustrated here, in fact, works for arbitrary
NFAs (without e-transitions).

19/21



Kleene's theorem
Kleene algebra
Kleene's theorem and Kleene algebra From DFAs to regular expressions

Theory of regular languages: overview

subset construction

DFAs NFAs
solve k exp_il_nd
_ ransitions
equations start state;
reg exps » : -NFAs

closure properties

20/21



Kleene's theorem
Kleene algebra
Kleene's theorem and Kleene algebra From DFAs to regular expressions

Reading

Relevant reading:

@ Regular expressions: Kozen chapters 7,8; J & M chapter 2.1.
(Both texts actually discuss more general ‘patterns’ — see
next lecture.)

@ From regular expressions to NFAs: Kozen chapter 8; J & M
chapter 2.3.

o Kleene algebra: Kozen chapter 9.

@ From NFAs to regular expressions: Kozen chapter 9.

Next two lectures: Some applications of all this theory.
@ String and pattern matching
@ Lexical analysis
@ Model checking

21/21



	More closure properties of regular languages
	Operations on languages
	-NFAs
	Closure under concatenation and Kleene star

	Regular expressions
	Regular expressions
	From regular expressions to regular languages

	Kleene's theorem and Kleene algebra
	Kleene's theorem
	Kleene algebra
	From DFAs to regular expressions


