Context-sensitive languages
Informatics 2A: Lecture 28

Alex Simpson

School of Informatics
University of Edinburgh
als@inf.ed.ac.uk

21 November, 2013

1/19

als@inf.ed.ac.uk

@ Showing a language isn't context-free
© Context-sensitive languages
© Context-sensitivity in natural language

@ Context-sensitivity in PLs

2/19

Showing a language isn’t context-free

Non-context-free languages

We saw in Lecture 8 that the pumping lemma can be used to show
a language isn't regular.

There's also a context-free version of this lemma, which can be
used to show that a language isn't even context-free:

Pumping Lemma for context-free languages. Suppose L is a
context-free language. Then L has the following property.

(P) There exists k > 0 such that every z € L with |z| > k
can be broken up into five substrings, z = uvwxy, such
that |vx| > 1, |vwx| < k and uv'wx'y € L for all i > 0.

3/19

Showing a language isn’t context-free

Context-free pumping lemma: the idea

In the regular case, the key point is that any sufficiently long string
will visit the same state twice.

In the context-free case, we note that any sufficiently large syntax
tree will have a downward path that visits the same non-terminal
twice. We can then ‘pump in’ extra copies of the relevant subtree
and remain within the language:

S

/\

4/19

Showing a language isn’t context-free

Context-free pumping lemma: continued

More precisely, suppose L has a CFG with m non-terminals.
Then take k so large that the syntax tree for any string of length
> k must contain a path of length > m.

Such a path is guaranteed to visit the same nonterminal twice.

To show that a language L is not context free, we just need to
prove that it satisfies the negation (—=P) of the property (P):

(—P) For every k > 0, there exists z € L with |z| > k
such that, for every decomposition z = uvwxy with
|vx| > 1 and |vwx| < k, there exists i > 0 such that

uv'wx'y ¢ L.

5/19

Showing a language isn’t context-free

Standard example 1

The language L = {a"b"c" | n > 0} isn't context-free!
We prove that (—=P) holds for L:

6/19

Showing a language isn’t context-free

Standard example 1

The language L = {a"b"c" | n > 0} isn't context-free!
We prove that (—=P) holds for L:

Suppose k > 0.

6/19

Showing a language isn’t context-free

Standard example 1

The language L = {a"b"c" | n > 0} isn't context-free!
We prove that (—=P) holds for L:

Suppose k > 0.
We choose z = a¥bkck. Then indeed z € L and |z| > k.

6/19

Showing a language isn’t context-free

Standard example 1

The language L = {a"b"c" | n > 0} isn't context-free!
We prove that (—=P) holds for L:

Suppose k > 0.

We choose z = a¥bkck. Then indeed z € L and |z| > k.

Suppose we have a decomposition z = uvwxy with |vx| > 1 and
[vwx| < k.

6/19

Showing a language isn’t context-free

Standard example 1

The language L = {a"b"c" | n > 0} isn't context-free!
We prove that (—=P) holds for L:

Suppose k > 0.
We choose z = a¥bkck. Then indeed z € L and |z| > k.

Suppose we have a decomposition z = uvwxy with |vx| > 1 and
[vwx| < k.

Since |vwx| < k, the string vwx contains at most two different
letters. So there must be some letter d € {a, b, c} that does not
occur in vwx.

6/19

Showing a language isn’t context-free

Standard example 1

The language L = {a"b"c" | n > 0} isn't context-free!
We prove that (—=P) holds for L:

Suppose k > 0.

We choose z = a¥bkck. Then indeed z € L and |z| > k.

Suppose we have a decomposition z = uvwxy with |vx| > 1 and
[vwx| < k.

Since |vwx| < k, the string vwx contains at most two different
letters. So there must be some letter d € {a, b, c} that does not
occur in vwx.

But then uwy ¢ L because at least one character different from d
now occurs < k times, whereas d still occurs k times.

6/19

Showing a language isn’t context-free

Standard example 1

The language L = {a"b"c" | n > 0} isn't context-free!
We prove that (—=P) holds for L:

Suppose k > 0.

We choose z = a¥bkck. Then indeed z € L and |z| > k.

Suppose we have a decomposition z = uvwxy with |vx| > 1 and
[vwx| < k.

Since |vwx| < k, the string vwx contains at most two different
letters. So there must be some letter d € {a, b, c} that does not
occur in vwx.

But then uwy ¢ L because at least one character different from d
now occurs < k times, whereas d still occurs k times.

We have shown that (—=P) holds with i = 0.

6/19

Showing a language isn’t context-free

Standard example 2

The language L = {ss | s € {a,b}"} isn't context-free!
We prove that (—P) holds for L:

Suppose k > 0.
We choose z = a¥bakbakba*b. Then indeed z € L and |z| > k.

Suppose we have a decomposition z = uvwxy with |vx| > 1 and
|[vwx| < k. Since |vwx| < k, the string vwx contains at most one b.

There are two main cases:

@ vx contains b, in which case uwy contains exactly 3 b's.
o Otherwise uwy has the form z = a8ba"ba'b @/ b where either:
o exactly two adjacent numbers from g, h,i,j are < k (this
happens if w contains b and |v| > 1 < |x]|), or
o exactly one of g, h,i,j is < k (this happens if w contains b
and one of v, x is empty, or if viwx does not contain b).

In each case, we have uwy ¢ L. So (—P) holds with / = 0.
7/19

Showing a language isn’t context-free

Complementation

Consider the language L’ defined by:

{a, b} —{ss|se{a b}}
This is context free.

The complement of L' is

{a,b}* — L' = {a, b} — ({a,b}* — {ss|s € {a, b}*})
= {ss|se{a b}"}

Thus the complement of a context-free language is not necessarily
context free.

Context-free languages are not closed under complement.

8/19

Showing a language isn’t context-free

Non-clicker question

What method would you use to show that the language

{a,b}* — {ss| s € {a, b}"}

is context free?

© Construct an NFA for it.

@ Find a regular expression for it.

© Build a CFG for it.

@ Construct a PDA for it.

© Apply the context-free pumping lemma.

9/19

Showing a language isn’t context-free

Non-clicker question

What method would you use to show that the language

{a,b}* — {ss| s € {a, b}"}

is context free?

© Construct an NFA for it.

@ Find a regular expression for it.

© Build a CFG for it.

@ Construct a PDA for it.

© Apply the context-free pumping lemma.

For a CFG for the language, see Kozen p. 155!

9/19

Context-sensitive languages

Context sensitive grammars

A Context Sensitive Grammar has productions of the form
aXy — afy

where X is a nonterminal, and «, 3, are sequences of terminals
and nonterminals (i.e., o, 3, € (N U X)*) with the requirement
that 3 is nonempty.

So the rules for expanding X can be sensitive to the context in
which the X occurs (contrasts with context-free).

Minor wrinkle: The nonempty restriction on disallows rules with
right-hand side e¢. To remedy this, we also permit the special rule

S —e¢

where S is the start symbol, and with the restriction that this rule
is only allowed to occur if the nonterminal S does not appear on

the right-hand-side of any productions.
10/19

Context-sensitive languages

Context sensitive languages

A language is context sensitive if it can be generated by a context
sensitive grammar.

The non-context-free languages:
{a"b"c" | n >0}
{ss|se{a b}"}
are both context sensitive.

In practice, it can be quite an effort to produce context sensitive
grammars, according to the definition above.

It is often more convenient to work with a more liberal notion of
grammar for generating context-sensitive languages.

11/19

Context-sensitive languages

General and noncontracting grammars

In a general or unrestricted grammar, we allow productions of the
form

a — 0

where «, 3 are sequences of terminals and nonterminals, i.e.,
a,f € (NUX)* with a containing at least one nonterminal.

In a noncontracting grammar, we restrict productions to the form
a — f

with a, 8 as above, subject to the additional requirement that
la] < |3] (i.e., the sequence 3 is at least as long as «).
In a noncontracting grammar also permit the special production

S —e¢

where S is the start symbol, as long as S does not appear on the

right-hand-side of any productions.
12/19

Context-sensitive languages

Example noncontracting grammar

Consider the noncontracting grammar with start symbol S:

S — abc

S — aSBc
cB — Bc
bB — bb

Example derivation (underlining the sequence to be expanded):

S = aSBc = aabcBc = aabBcc = aabbcc
Exercise: Convince yourself that this grammar generates exactly
the strings a"b"c” where n > 0.

(N.B. With noncontracting grammars and CSGs, need to think in
terms of derivations, not syntax trees.)

13/19

Context-sensitive languages

Noncontracting = Context sensitive

Theorem. A language is context sensitive if and only if it can be
generated by a noncontracting grammar.

That every context-sensitive language can be generated by a
noncontracting grammar is immediate, since context-sensitive
grammars are, by definition, noncontracting.

The proof that every noncontracting grammar can be turned into a

context sensitive one is intricate, and beyond the scope of the
course.

Sometimes (e.g., in Kozen) noncontracting grammars are called
context sensitive grammars; but this terminology is not faithful to

Chomsky's original definition.

14/19

Context-sensitive languages

The Chomsky Hierarchy

At this point, we have a fairly complete understanding of the
machinery associated with the different levels of the Chomsky
hierarchy.

@ Regular languages: DFAs, NFAs, regular expressions, regular
grammars.

o Context-free languages: context-free grammars,
nondeterministic pushdown automata.

o Context-sensitive languages: context-sensitive grammars,
noncontracting grammars.

@ Recursively enumerable languages: unrestricted grammars.

15/19

Context-sensitivity in natural language

Context-sensitivity in natural language

Examples of context sensitivity in natural language were presented
in Lecture 25.

@ Agreement phenomena in many languages (e.g., verb-subject
agreement).

@ Crossing dependencies in Swiss German (and Dutch).
There are other similar phenomena.

It is believed that natural languages naturally live (comfortably)
within the context-sensitive level of the Chomsky hierarchy.

16/19

Context-sensitivity in PLs

Context-sensitivity in programming languages

Some aspects of typical programming languages can't be captured
by context-free grammars, e.g.
e Typing rules
@ Scoping rules (e.g. variables can only be used in contexts
where they have been ‘declared’)

@ Access constraints (e.g. use of public vs. private methods
in Java).

The usual approach is to give a CFG that's a bit 'too generous’,
and then separately describe these additional rules.
(E.g. typechecking done as a separate stage after parsing.)

In principle, though, all the above features fall within what can be
captured by context-sensitive grammars. In fact, no programming
language known to humankind contains anything that can't.

17/19

Context-sensitivity in PLs

Scoping constraints aren't context-free

Consider the simple language L; given by
S — € | declare v;S | use v;S

where v stands for a lexical class of variables. Let L, be the
language consisting of strings of L; in which variables must be
declared before use.

Assuming there are infinitely many possible variables, it's a little
exercise to show L, is not context-free, but is context-sensitive.

(If there are just n possible variables, we could in theory give a CFG
for Ly with around 2" nonterminals — but that’s obviously silly. . .)

18/19

Context-sensitivity in PLs

Summary

o Context-sensitive languages are a big step up from
context-free languages in terms of their power and generality.

o Natural languages have features that can't be captured
conveniently (or at all) by context-free grammars. However, it
appears that NLs are only mildly context-sensitive — they
only exploit the low end of the power offered by CSGs.

@ Programming languages contain non-context-free features
(typing, scoping etc.), but all these fall comfortably within the
realm of context-sensitive languages.

@ Next time: what kinds of machines are needed to recognize
context-sensitive languages?

19/19

	Showing a language isn't context-free
	Context-sensitive languages
	Context-sensitivity in natural language
	Context-sensitivity in PLs

