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Non-regular languages

We have hinted before that not all languages are regular. E.g.

The language {anbn | n ≥ 0}.
The language of all well-matched sequences of brackets (, ).
N.B. A sequence x is well-matched if it contains the same
number of opening brackets ’(’ and closing brackets ‘)’, and
no initial subsequence y of x contains more ‘)’ than ’(’.

The language of all prefixes of well-matched sequences of
brackets (, ). A string x is in this language if no initial
subsequence y of x contains more ‘)’ than ’(’.

But how do we know these languages aren’t regular?

And can we come up with a general technique for proving the
non-regularity of languages?
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The basic intuition: DFAs can’t count!

Consider L = {anbn | n ≥ 0}. Just suppose, hypothetically, there
were some DFA M with L(M) = L.

Suppose furthermore that M had just processed an, and some
continuation bm was to follow.

Intuition: M would need to have counted the number of a’s, in
order to know how many b’s to expect.

More precisely, let qn denote the state of M after processing an.
Then for any m 6= n, the states qm, qn must be different, since bm

takes us to an accepting state from qm, but not from qn.

In other words, M would need infinitely many states, one for each
natural number. Contradiction!

4 / 15



Showing a language isn’t regular
The pumping lemma

Applying the pumping lemma

Three clicker questions

For each of the following languages over {a, b}, decide whether
they are regular or not.

Press 1 for regular, 2 for non-regular.

1 Strings with an odd number of a’s and an even number of b’s.

2 Strings containing strictly more a’s than b’s.

3 Strings such that (no. of a’s) * (no. of b’s) ≡ 6 (mod. 24)
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Put slightly differently. . .

Suppose there were some DFA M for L = {anbn | n ≥ 0}. Then M
would have some finite number of states, say k .

Now consider what happens when we feed M with the string ak . It
passes through a sequence of k + 1 states (including the initial
state). So there must be some state q that’s visited twice or more:

q

v

u

This means the string ak can be decomposed as uvw , where

u takes M from the initial state to q,
v takes M once round the loop from q to q,
w is whatever is left of ak after uv .

(Note that u and w might be ε, but v definitely isn’t.) 6 / 15
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More generally. . .

If L is any regular language, we can pick some corresponding DFA
M, and it will have some number of states, say k .

Not only must every string of length ≥ k cause a revisited state —
so must every substring of length ≥ k within such a string.

Indeed, consider what happens when we run M on a string
xyz ∈ L, where |y | ≥ k . There must be at least one state q we visit
twice in the course of processing y :

q

v

ux w z

(There may be other ‘revisited states’ not indicated here.)
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The idea of ‘pumping’

q

v

ux w z

So y can be decomposed as uvw , where

xu takes M from the initial state to q,

v 6= ε takes M once round the loop from q to q,

wz takes M from q to an accepting state.

But now M will be oblivious to whether, or how many times, we go
round the v -loop!

So we can ‘pump in’ as many copies of the substring v as we like,
knowing that we’ll still end in an accepting state.
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The pumping lemma: official form

The pumping lemma basically summarizes what we’ve just said.

Pumping Lemma. Suppose L is a regular language. Then L has
the following property.

(P) There exists k ≥ 0 such that, for all strings x , y , z
with xyz ∈ L and |y | ≥ k, there exist strings u, v ,w such
that y = uvw, v 6= ε, and for every i ≥ 0 we have
xuv iwz ∈ L.
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The pumping lemma: contrapositive form

Since we want to use the pumping lemma to show a language isn’t
regular, we usually apply it in the following equivalent but
back-to-front form.

Suppose L is a language for which the following property holds:

(¬P) For all k ≥ 0, there exist strings x , y , z with
xyz ∈ L and |y | ≥ k such that, for every decomposition
of y as y = uvw where v 6= ε, there is some i ≥ 0 for
which xuv iwz 6∈ L.

Then L is not a regular language.

N.B. The pumping lemma can only be used to show a language
isn’t regular. Showing L satisfies (P) doesn’t prove L is regular!

To show that a language is regular, give some DFA or NFA or
regular expression that defines it.
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The pumping lemma: a user’s guide

So to show some language L is not regular, it’s enough to show
that L satisfies (¬P).

Note that (¬P) is quite a complex statement: ∀ · · · ∃ · · · ∀ · · · ∃ · · · .

It’s helpful to think in terms of how you would refute an opponent
who claimed to have a DFA for L.

We’ll look at a simple example first, then offer some advice on the
general pattern of argument.
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Example 1

Consider L = {anbn | n ≥ 0}.
We show that L satisfies (¬P).

Suppose k ≥ 0.
(k is chosen by ‘opponent’ — we just have to cope.)

Consider the strings x = ε, y = ak , z = bk . Note that xyz ∈ L and
| y |≥ k as required.
(x , yz are cunningly chosen by ‘us’.)

Suppose now we’re given a decomposition of y as uvw with v 6= ε.
(u, v ,w chosen by ‘opponent’ — we have to cope.)

Let i = 0. (i chosen by ‘us’.)
Then uv iw = uw = al for some l < k . So xuv iwz = albk 6∈ L.
(And so we win!)

Thus L satisfies (¬P), so L isn’t regular.
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Use of pumping lemma: general pattern

The opponent proposes a number k ≥ 0.
You don’t get to choose k — you have to cope with what the
opponent throws at you.

You respond with a cunning choice of strings x , y , z , which
might depend on k . These must satisfy xyz ∈ L and |y | ≥ k .
Also, y should be chosen to ‘disallow pumping’ . . .

The opponent picks a decomposition of y as uvw with v 6= ε.
Again, you just have to cope with his choice.

Finally, you have to choose i (6= 1) such that xuv iwz 6∈ L.
Here i might depend on all the previous data.
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Example 2

Consider L = {an2 | n ≥ 0}.
We show that L satisfies (¬P):

Suppose k ≥ 0.

Let x = ak2−k , y = ak , z = ε, so xyz = ak2 ∈ L.

Given any splitting of y as uvw with v 6= ε, we have 1 ≤ |v | ≤ k .

So taking i = 2, we have xuv2wz = an where k2 + 1 ≤ n ≤ k2 + k .

But there are no perfect squares between k2 and k2 + 2k + 1.

So n isn’t a perfect square. Thus xuv2wz 6∈ L.

Thus L satisfies (¬P), so L isn’t regular.
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Reading and prospectus

Relevant reading: Kozen chapters 11, 12.

This concludes the part of the course on regular languages.

Next time, we start on the next level up in the Chomsky hierarchy:
context-free languages.
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