
Phrase Structure and Parsing as Search
Informatics 2A: Lecture 17

Shay Cohen

School of Informatics
University of Edinburgh

30 October 2015

1 / 58

1 Phrase Structure
Heads and Phrases
Desirable Properties of a Grammar
A Fragment of English

2 Grammars and Parsing
Recursion
Structural Ambiguity
Recursive Descent Parsing
Shift-Reduce Parsing

2 / 58

Last class

Part-of-speech tagging and its applications

The use of hidden Markov models for POS tagging

The Viterbi algorithm

3 / 58

Heads and Phrases

Noun (N): Noun Phrase (NP)
Adjective (A): Adjective Phrase (AP)
Verb (V): Verb Phrase (VP)
Preposition (P): Prepositional Phrase (PP)

So far we have looked at terminals (words or POS tags).

Today, we’ll look at non-terminals, which correspond to
phrases.

The class that a word belongs to is closely linked to the name
of the phrase it customarily appears in.

In a X-phrase (eg NP), the key occurrence of X (eg N) is
called the head.

In English, the head tends to appear in the middle of a phrase.

4 / 58

Heads and Phrases

English NPs are commonly of the form:

(Det) Adj* Noun (PP | RelClause)*
NP: the angry duck that tried to bite me, head: duck.

VPs are commonly of the form:

(Aux) Adv* Verb Arg* Adjunct*
Arg → NP | PP
Adjunct → PP | AdvP | . . .
VP: usually eats artichokes for dinner, head: eat.

In Japanese, Korean, Hindi, Urdu, and other head-final languages,
the head is at the end of its associated phrase.

In Irish, Welsh, Scots Gaelic and other head-initial languages, the
head is at the beginning of its associated phrase.

5 / 58

Desirable Properties of a Grammar

Chomsky specified two properties that make a grammar
“interesting and satisfying”:

It should be a finite specification of the strings of the
language, rather than a list of its sentences.

It should be revealing, in allowing strings to be associated
with meaning (semantics) in a systematic way.

We can add another desirable property:

It should capture structural and distributional properties of
the language. (E.g. where heads of phrases are located; how a
sentence transforms into a question; which phrases can float
around the sentence.)

6 / 58

Desirable Properties of a Grammar

Context-free grammars (CFGs) provide a pretty good
approximation.

Some features of NLs are more easily captured using mildly
context-sensitive grammars, as well see later in the course.

There are also more modern grammar formalisms that better
capture structural and distributional properties of human
languages. (E.g. combinatory categorial grammar.)

But LL(1) grammars and the like definitely aren’t enough for
NLs. Even if we could make a NL grammar LL(1), we
wouldn’t want to: this would artificially suppress ambiguities,
and would often mutilate the ‘natural’ structure of sentences.

7 / 58

A Tiny Fragment of English

Let’s say we want to capture in a grammar the structural and
distributional properties that give rise to sentences like:

A duck walked in the park. NP,V,PP
The man walked with a duck. NP,V,PP
You made a duck. Pro,V,NP
You made her duck. ? Pro,V,NP
A man with a telescope saw you. NP,PP,V,Pro
A man saw you with a telescope. NP,V,Pro,PP
You saw a man with a telescope. Pro,V,NP,PP

We want to write grammatical rules that generate these phrase
structures, and lexical rules that generate the words appearing in
them.

8 / 58

Grammar for the Tiny Fragment of English

Grammar G1 generates the sentences on the previous slide:

Grammatical rules Lexical rules
S → NP VP Det → a | the | her (determiners)
NP → Det N N → man | park | duck | telescope (nouns)
NP → Det N PP Pro → you (pronoun)
NP → Pro V → saw | walked | made (verbs)
VP → V NP PP Prep → in | with | for (prepositions)
VP → V NP
VP → V
PP → Prep NP

Does G1 produce a finite or an infinite number of sentences?

9 / 58

Recursion

Recursion in a grammar makes it possible to generate an infinite
number of sentences.

In direct recursion, a non-terminal on the LHS of a rule also
appears on its RHS. The following rules add direct recursion to G1:

VP → VP Conj VP
Conj → and | or

In indirect recursion, some non-terminal can be expanded (via
several steps) to a sequence of symbols containing that
non-terminal:

NP → Det N PP
PP → Prep NP

10 / 58

Structural Ambiguity

You saw a man with a telescope.

S

NP

Pro

You

VP

V

saw

NP

Det

a

N

man

PP

Prep

with

NP

Det

a

N

telescope

11 / 58

Structural Ambiguity

You saw a man with a telescope.

S

NP

Pro

You

VP

V

saw

NP

Det

a

N

man

PP

Prep

with

NP

Det

a

N

telescope

12 / 58

Structural Ambiguity

You saw a man with a telescope.

S

NP

Pro

You

VP

V

saw

NP

Det

a

N

man

PP

Prep

with

NP

Det

a

N

telescope

S

NP

Pro

You

VP

V

saw

NP

Det

a

N

man

PP

Prep

with

NP

Det

a

N

telescope

This illustrates attachment ambiguity: the PP can be a part of the
VP or of the NP. Note that there’s no POS ambiguity here.

13 / 58

Structural Ambiguity

Grammar G1 only gives us one analysis of you made her duck.

S

NP

Pro

You

VP

V

made

NP

Det

her

N

duck

There is another, ditransitive (i.e., two-object) analysis of this
sentence – one that underlies the pair:

What did you make for her?
You made her duck.

14 / 58

Structural Ambiguity

For this alternative, G1 also needs rules like:

NP → N
VP → V NP NP
Pro → her

S

NP

Pro

You

VP

V

made

NP

Det

her

N

duck

S

NP

Pro

You

VP

V

made

NP

Pro

her

NP

N

duck

In this case, the structural ambiguity is rooted in POS ambiguity.

15 / 58

Structural Ambiguity

There is a third analysis as well, one that underlies the pair:

What did you make her do?
You made her duck. (move head or body quickly downwards)

Here, the small clause (her duck) is the direct object of a verb.

Similar small clauses are possible with verbs like see, hear and
notice, but not ask, want, persuade, etc.

G1 needs a rule that requires accusative case-marking on the
subject of a small clause and no tense on its verb.:

VP → V S1
S1 → NP(acc) VP(untensed)
NP(acc) → her | him | them

16 / 58

Structural Ambiguity

Now we have three analyses for you made her duck:

NP VP

S

VPro NP

You made duck

Det N

her

NP VP

S

VPro

You made duck

NP NP

Pro

her

N

NP VP

S

VPro

You made duck

S

NP(acc)

her

VP

V

How can we compute these analyses automatically?

17 / 58

Parsing Algorithms

A parser is an algorithm that computes a structure for an input
string given a grammar. All parsers have two fundamental
properties:

Directionality: the sequence in which the structures are
constructed (e.g., top-down or bottom-up).

Search strategy: the order in which the search space of
possible analyses is explored (e.g., depth-first, breadth-first).

For instance, LL(1) parsing is top-down and depth-first.

18 / 58

Coming up: A zoo of parsing algorithms

As we’ve noted, LL(1) isn’t good enough for NL. We’ll be looking
at other parsing algorithms that work for more general CFGs.

Recursive descent parsers (top-down). Simple and very
general, but inefficient. Other problems

Shift-reduce parsers (bottom-up).

The Cocke-Younger-Kasami algorithm (bottom up). Works for
any CFG with reasonable efficiency.

The Earley algorithm (top down). Chart parsing enhanced
with prediction.

19 / 58

Recursive Descent Parsing

A recursive descent parser treats a grammar as a specification of
how to break down a top-level goal into subgoals. Therefore:

Parser searches through the trees licensed by the grammar to
find the one that has the required sentence along its yield.

Directionality = top-down: It starts from the start symbol of
the grammar, and works its way down to the terminals.

Search strategy = depth-first: It expands a given terminal as
far as possible before proceeding to the next one.

20 / 58

Algorithm Sketch: Recursive Descent Parsing

1 The top-level goal is to derive the start symbol (S).

2 Choose a grammatical rule with S as its LHS
(e.g, S → NP VP), and replace S with the RHS of the rule
(the subgoals; e.g., NP and VP).

3 Choose a rule with the leftmost subgoal as its LHS (e.g.,
NP → Det N). Replace the subgoal with the RHS of the rule.

4 Whenever you reach a lexical rule (e.g., Det → the), match
its RHS against the current position in the input string.

If it matches, move on to next position in the input.
If it doesn’t, try next lexical rule with the same LHS.
If no rules with same LHS, backtrack to most recent choice of
grammatical rule and choose another rule with the same LHS.
If no more grammatical rules, back up to the previous subgoal.

5 Iterate until the whole input string is consumed, or you fail to
match one of the positions in the input. Backtrack on failure.

21 / 58

Recursive Descent Parsing

the dog saw a man in the park

S

22 / 58

Recursive Descent Parsing

the dog saw a man in the park

S

NP VP

23 / 58

Recursive Descent Parsing

the dog saw a man in the park

S

VPNP

Det N PP

24 / 58

Recursive Descent Parsing

the dog saw a man in the park

S

VPNP

N PPDet

the

25 / 58

Recursive Descent Parsing

the dog saw a man in the park

S

VPNP

N PPDet

the

26 / 58

Recursive Descent Parsing

the dog saw a man in the park

S

VPNP

PPDet

the

N

man

27 / 58

Recursive Descent Parsing

the dog saw a man in the park

S

VPNP

PPDet

the

N

park

28 / 58

Recursive Descent Parsing

the dog saw a man in the park

S

VPNP

PPDet

the

N

dog

29 / 58

Recursive Descent Parsing

the dog saw a man in the park

S

VPNP

Det

the

N

dog

PP

P NP

30 / 58

Recursive Descent Parsing

the dog saw a man in the park

S

VPNP

Det

the

N

dog

PP

NPP

in

31 / 58

Recursive Descent Parsing

the dog saw a man in the park

S

VP
NP

NDet

the

32 / 58

Recursive Descent Parsing

the dog saw a man in the park

S

VPNP

Det

the

N

dog

33 / 58

Recursive Descent Parsing

the dog saw a man in the park

S

NP

Det

the

N

dog

VP

NP PPV

saw

34 / 58

Recursive Descent Parsing

the dog saw a man in the park

S

NP

Det

the

N

dog

VP

PPV

saw

NP

N PPDet

a

35 / 58

Recursive Descent Parsing

the dog saw a man in the park

S

NP

Det

the

N

dog

VP

PPV

saw

NP

PPDet

a

N

man

36 / 58

Recursive Descent Parsing

the dog saw a man in the park

S

NP

Det

the

N

dog

VP

PPV

saw

NP

Det

a

N

man

PP

NPP

in

37 / 58

Recursive Descent Parsing

the dog saw a man in the park

S

NP

Det

the

N

dog

VP

PPV

saw

NP

Det

a

N

man

PP

P

in

NP

Det N PP

38 / 58

Recursive Descent Parsing

the dog saw a man in the park

S

NP

Det

the

N

dog

VP

PPV

saw

NP

Det

a

N

man

PP

P

in

NP

Det

the

N

park

PP

NPP

39 / 58

Recursive Descent Parsing

the dog saw a man in the park

S

NP

Det

the

N

dog

VP

V

saw

PPNP

Det N

40 / 58

Recursive Descent Parsing

the dog saw a man in the park

S

NP

Det

the

N

dog

VP

V

saw

PPNP

Det

a

N

man

41 / 58

Recursive Descent Parsing

the dog saw a man in the park

S

NP

Det

the

N

dog

VP

V

saw

NP

Det

a

N

man

PP

P

in

NP

Det

the

N

park

42 / 58

Shift-Reduce Parsing

A Shift-Reduce parser tries to find sequences of words and phrases
that correspond to the righthand side of a grammar production
and replace them with the lefthand side:

Directionality = bottom-up: starts with the words of the
input and tries to build trees from the words up.

Search strategy = breadth-first: starts with the words, then
applies rules with matching right hand sides, and so on until
the whole sentence is reduced to an S.

43 / 58

Algorithm Sketch: Shift-Reduce Parsing

Until the words in the sentences are substituted with S:

Scan through the input until we recognise something that
corresponds to the RHS of one of the production rules (shift)

Apply a production rule in reverse; i.e., replace the RHS of the
rule which appears in the sentential form with the LHS of the
rule (reduce)

A shift-reduce parser implemented using a stack:

1 start with an empty stack

2 a shift action pushes the current input symbol onto the stack

3 a reduce action replaces n items with a single item

44 / 58

Shift-Reduce Parsing

Stack Remaining Text

my dog saw a man in the park with a statue

45 / 58

Shift-Reduce Parsing

Stack Remaining Text

my

dog saw a man in the park with a statueDet

46 / 58

Shift-Reduce Parsing

Stack Remaining Text

my dog

saw a man in the park with a statueDet N

47 / 58

Shift-Reduce Parsing

Stack Remaining Text

my dog

saw a man in the park with a statue

Det N

NP

48 / 58

Shift-Reduce Parsing

Stack Remaining Text

NP

Det

my

N

dog

V

saw

NP

Det

a

N

man

in the park with a statue

49 / 58

Shift-Reduce Parsing

Stack Remaining Text

NP

Det

my

N

dog

V

saw

NP

Det

a

N

man

P

in

NP

Det

the

N

park

with a statuePP

50 / 58

Shift-Reduce Parsing

Stack Remaining Text

NP

Det

my

N

dog

V

saw

NP

NP

Det

a

N

man

PP

P

in

NP

Det

the

N

park

with a statue

51 / 58

Shift-Reduce Parsing

Stack Remaining Text

NP

Det

my

N

dog

V

saw

NP

NP

Det

a

N

man

PP

P

in

NP

Det

the

N

park

with a statueVP

52 / 58

Shift-Reduce Parsing

Stack Remaining Text

NP

Det

my

N

dog

V

saw

NP

NP

Det

a

N

man

PP

P

in

NP

Det

the

N

park

with a statue

VP

S

53 / 58

Shift-reduce parsers and pushdown automata

Shift-reduce parsing is equivalent to a pushdown automaton
constructed from the CFG (with one state q0):

start with empty stack

shift: a transition in the PDA from q0 (to q0) putting a
terminal symbol on the stack

reduce: whenever the righthand side of a rule appears on top
of the stack, pop the RHS and push the lefthand side (still
staying in q0). Don’t consume anything from the input.

accept the string if the start symbol is in the stack and the
end of string has been reached

If there is some derivation for a given sentence under the CFG,
there will be a sequence of actions for which this NPDA accepts
the string

54 / 58

Generalised LR parsing

If there is some derivation for a given sentence under the
CFG, there will be a sequence of actions for which this
NPDA accepts the string

But how do we find this derivation?

One way to do this is using so-called generalised LR parsing, which
explores all possible paths of the above NPDA

Modern parsers do it differently, because GLR can be expontential
in the worst-case

55 / 58

Modern shift-reduce parsers

Shift-reduce parsers are highly efficient, they are linear in the
length of the string, if they explore only one path

How to do that? Learn from data what actions to take at each
point, and try to make the optimal decisions so that the correct
parser will be found

This keeps the parser linear in the length of the string, but one
small error can propagate through the whole parse, and lead to the
wrong parse tree

56 / 58

Try it out Yourselves!

Recursive Descent Parser

>>> from nltk.app import rdparser

>>> rdparser()

Shift-Reduce Parser

>>> from nltk.app import srparser

>>> srparser()

57 / 58

Summary

We use CFGs to represent NL grammars

Grammars need recursion to produce infinite sentences

Most NL grammars have structural ambiguity

A parser computes structure for an input automatically

Recursive descent and shift-reduce parsing

We’ll examine more parsers in Lectures 17–22

Reading: J&M (2nd edition) Chapter 12 (intro – section
12.3), Chapter 13 (intro – section 13.3)

Next lecture: The CYK algorithm

58 / 58

	Phrase Structure
	Heads and Phrases
	Desirable Properties of a Grammar
	A Fragment of English

	Grammars and Parsing
	Recursion
	Structural Ambiguity
	Recursive Descent Parsing
	Shift-Reduce Parsing

