
Part-of-Speech Tagging
Informatics 2A: Lecture 16

Shay Cohen

School of Informatics
University of Edinburgh

29 October 2015

1 / 45

Last class

We discussed the POS tag lexicon

When do words belong to the same class? Three criteria

What tagset should we use?

What are the sources of ambiguity for POS tagging?

2 / 45

1 Automatic POS tagging: the problem

2 Methods for tagging
Unigram tagging
Bigram tagging
Tagging using Hidden Markov Models: Viterbi algorithm
Rule-based Tagging

Reading: Jurafsky & Martin, chapters (5 and) 6.

3 / 45

Benefits of Part of Speech Tagging

Essential preliminary to (anything that involves) parsing.

Can help with speech synthesis. For example, try saying the
sentences below out loud.

Can help with determining authorship: are two given
documents written by the same person? Forensic linguistics.

1 Have you read ‘The Wind in the Willows’? (noun)

2 The clock has stopped. Please wind it up. (verb)

3 The students tried to protest. (verb)

4 The students’ protest was successful. (noun)

4 / 45

Corpus annotation

A corpus (plural corpora) is a computer-readable collection of NL
text (or speech) used as a source of information about the
language: e.g. what words/constructions can occur in practice, and
with what frequencies.
The usefulness of a corpus can be enhanced by annotating each
word with a POS tag, e.g.

Our/PRP\$ enemies/NNS are/VBP innovative/JJ and/CC

resourceful/JJ ,/, and/CC so/RB are/VB we/PRP ./.

They/PRP never/RB stop/VB thinking/VBG about/IN new/JJ

ways/NNS to/TO harm/VB our/PRP\$ country/NN and/CC

our/PRP\$ people/NN, and/CC neither/DT do/VB we/PRP ./.

Typically done by an automatic tagger, then hand-corrected by a
native speaker, in accordance with specified tagging guidelines.

5 / 45

POS tagging: difficult cases

Even for humans, tagging sometimes poses difficult decisions.
Various tests can be applied, but they don’t always yield clear
answers.
E.g. Words in -ing: adjectives (JJ), or verbs in gerund form (VBG)?
a boring/JJ lecture a very boring lecture

? a lecture that bores
the falling/VBG leaves *the very falling leaves

the leaves that fall
a revolving/VBG? door *a very revolving door

a door that revolves
*the door seems revolving

sparkling/JJ? lemonade ? very sparkling lemonade
lemonade that sparkles
the lemonade seems sparkling

In view of such problems, we can’t expect 100% accuracy from an
automatic tagger.

6 / 45

Word types and tokens

Need to distinguish word tokens (particular occurrences in a
text) from word types (distinct vocabulary items).

We’ll count different inflected or derived forms (e.g. break,
breaks, breaking) as distinct word types.

A single word type (e.g. still) may appear with several POS.

But most words have a clear most frequent POS.

Question: How many tokens and types in the following? Ignore
case and punctuation.

Esau sawed wood. Esau Wood would saw wood. Oh, the
wood Wood would saw!

1 14 tokens, 6 types

2 14 tokens, 7 types

3 14 tokens, 8 types

4 None of the above.
7 / 45

Extent of POS Ambiguity

The Brown corpus (1,000,000 word tokens) has 39,440 different
word types.

35340 have only 1 POS tag anywhere in corpus (89.6%)

4100 (10.4%) have 2 to 7 POS tags

So why does just 10.4% POS-tag ambiguity by word type lead to
difficulty?
This is thanks to Zipfian distribution: many high-frequency words
have more than one POS tag.
In fact, more than 40% of the word tokens are ambiguous.

He wants to/TO go.
He went to/IN the store.

He wants that/DT hat.
It is obvious that/CS he wants a hat.
He wants a hat that/WPS fits.

8 / 45

Word Frequencies in Different Languages

Ambiguity by part-of-speech tags:

Language Type-ambiguous Token-ambiguous
English 13.2% 56.2%
Greek <1% 19.14%
Japanese 7.6% 50.2%
Czech <1% 14.5%
Turkish 2.5% 35.2%

9 / 45

Some tagging strategies

We’ll look at several methods or strategies for automatic tagging.

One simple strategy: just assign to each word its most
common tag. (So still will always get tagged as an adverb —
never as a noun, verb or adjective.) Call this unigram tagging,
since we only consider one token at a time.

Surprisingly, even this crude approach typically gives around
90% accuracy. (State-of-the-art is 96–98%).

Can we do better? We’ll look briefly at bigram tagging, then
at Hidden Markov Model tagging.

10 / 45

Bigram tagging

We can do much better by looking at pairs of adjacent tokens.
For each word (e.g. still), tabulate the frequencies of each possible
POS given the POS of the preceding word.

Example (with made-up numbers):

still DT MD JJ . . .

NN 8 0 6
JJ 23 0 14

VB 1 12 2
RB 6 45 3

Given a new text, tag the words from left to right, assigning each
word the most likely tag given the preceding one.

Could also consider trigram (or more generally n-gram) tagging,
etc. But the frequency matrices would quickly get very large, and
also (for realistic corpora) too ‘sparse’ to be really useful.

11 / 45

Bigram model

Example

and a member of both countries , a serious the services of the Dole
of . ” Ross declined to buy beer at the winner of his wife , I can
live with her hand who sleeps below 50 @-@ brick appealed to
make his last week the size , Radovan Karadzic said . ” The Dow
Jones set aside from the economy that Samuel Adams was half
@-@ filled with it , ” but if that Yeltsin . ” but analysts and goes
digital Popcorn , you don ’t . ” this far rarer cases it is educable .

12 / 45

Trigram model

Example

change his own home ; others (such disagreements have
characterized Diller ’s team quickly launched deliberately raunchier
, more recently , ” said Michael Pasano , a government and ruling
party ” presidential power , and Estonia , which published
photographs by him in running his own club

13 / 45

4-gram model

Example

not to let nature take its course . ” we’ve got one time to do it in
three weeks and was criticized by Lebanon and Syria to use the
killing of thousands of years of involvement in the plots .

14 / 45

Problems with bigram tagging

One incorrect tagging choice might have unintended effects:

The still smoking remains of the campfire
Intended: DT RB VBG NNS IN DT NN

Bigram: DT JJ NN VBZ . . .

No lookahead: choosing the ‘most probable’ tag at one stage
might lead to highly improbable choice later.

The still was smashed
Intended: DT NN VBD VBN

Bigram: DT JJ VBD?

We’d prefer to find the overall most likely tagging sequence given
the bigram frequencies. This is what the Hidden Markov Model
(HMM) approach achieves.

15 / 45

Hidden Markov Models

The idea is to model the agent that might have generated the
sentence by a semi-random process that outputs a sequence of
words.

Think of the output as visible to us, but the internal states of
the process (which contain POS information) as hidden.

For some outputs, there might be several possible ways of
generating them i.e. several sequences of internal states. Our
aim is to compute the sequence of hidden states with the
highest probability.

Specifically, our processes will be ‘NFAs with probabilities’.
Simple, though not a very flattering model of human language
users!

16 / 45

Definition of Hidden Markov Models

For our purposes, a Hidden Markov Model (HMM) consists of:

A set Q = {q0, q1, . . . , qT} of states, with q0 the start state.
(Our non-start states will correspond to parts-of-speech).

A transition probability matrix
A = (aij | 0 ≤ i ≤ T , 1 ≤ j ≤ T), where aij is the probability

of jumping from qi to qj . For each i , we require
T∑
j=1

aij = 1.

For each non-start state qi and word type w , an emission
probability bi (w) of outputting w upon entry into qi . (Ideally,
for each i , we’d have

∑
w bi (w) = 1.)

We also suppose we’re given an observed sequence w1,w2 . . . ,wn

of word tokens generated by the HMM.

17 / 45

Transition Probabilities

18 / 45

Emission Probabilities

19 / 45

Generating a Sequence

Hidden Markov models can be thought of as devices that generate
sequences with hidden states:

Edinburgh has a very rich history .

20 / 45

Generating a Sequence

Hidden Markov models can be thought of as devices that generate
sequences with hidden states:

Edinburgh
NNP

p(NNP|〈s〉)× p(Edinburgh|NNP)

21 / 45

Generating a Sequence

Hidden Markov models can be thought of as devices that generate
sequences with hidden states:

Edinburgh has
NNP VBZ

p(NNP|〈s〉)× p(Edinburgh|NNP)

p(VBZ |NNP)× p(has|VBZ)

22 / 45

Generating a Sequence

Hidden Markov models can be thought of as devices that generate
sequences with hidden states:

Edinburgh has a
NNP VBZ DT

p(NNP|〈s〉)× p(Edinburgh|NNP)

p(VBZ |NNP)× p(has|VBZ)

p(DT |VBZ)× p(a|DT)

23 / 45

Generating a Sequence

Hidden Markov models can be thought of as devices that generate
sequences with hidden states:

Edinburgh has a very
NNP VBZ DT RB

p(NNP|〈s〉)× p(Edinburgh|NNP)

p(VBZ |NNP)× p(has|VBZ)

p(DT |VBZ)× p(a|DT)

p(RB|DT)× p(very |RB)

24 / 45

Generating a Sequence

Hidden Markov models can be thought of as devices that generate
sequences with hidden states:

Edinburgh has a very rich
NNP VBZ DT RB JJ

p(NNP|〈s〉)× p(Edinburgh|NNP)

p(VBZ |NNP)× p(has|VBZ)

p(DT |VBZ)× p(a|DT)

p(RB|DT)× p(very |RB)

p(JJ|RB)× p(rich|JJ)

25 / 45

Generating a Sequence

Hidden Markov models can be thought of as devices that generate
sequences with hidden states:

Edinburgh has a very rich history
NNP VBZ DT RB JJ NN

p(NNP|〈s〉)× p(Edinburgh|NNP)

p(VBZ |NNP)× p(has|VBZ)

p(DT |VBZ)× p(a|DT)

p(RB|DT)× p(very |RB)

p(JJ|RB)× p(rich|JJ)

p(NN|JJ)× p(history |NN)

26 / 45

Transition and Emission Probabilities

VB TO NN PRP
<s> .019 .0043 .041 .67
VB .0038 .035 .047 .0070
TO .83 0 .00047 0
NN .0040 .016 .087 .0045
PRP .23 .00079 .001 .00014

I want to race
VB 0 .0093 0 .00012
TO 0 0 .99 0
NN 0 .000054 0 .00057
PRP .37 0 0 0

27 / 45

How Do we Search for Best Tag Sequence?

We have defined an HMM, but how do we use it? We are given a
word sequence and must find their corresponding tag sequence.

It’s easy to compute the probability of generating a word
sequence w1 . . .wn via a specific tag sequence t1 . . . tn: let t0
denote the start state, and compute

T∏
i=1

P(ti |ti−1).P(wi |ti) (1)

using the transition and emission probabilities.

But how do we find the most likely tag sequence?

We can do this efficiently using dynamic programming and
the Viterbi algorithm.

28 / 45

Question

Given n word tokens and a tagset with T choices per token, how
many tag sequences do we have to evaluate?

1 |T | tag sequences

2 n tag sequences

3 |T | × n tag sequences

4 |T |n tag sequences

29 / 45

The HMM trellis

NN

TO

VB

PRP

NN

TO

VB

NN

TO

VB

NN

TO

VB

PRP PRP PRP

START

I want to race

30 / 45

The Viterbi Algorithm

Keep a chart of the form Table(POS, i) where POS ranges over
the POS tags and i ranges over the indices in the sentence.

For all T and i :

Table(T , i + 1)← max
T ′

Table(T ′, i)× p(T |T ′)× p(wi+1|T)

and

Table(T , 0)← p(T |〈s〉)

Table(., n) will contain the probability of the most likely sequence.
To get the actual sequence, we need backpointers.

31 / 45

The Viterbi algorithm

Let’s now tag the newspaper headline:

deal talks fail

Note that each token here could be a noun (N) or a verb (V).
We’ll use a toy HMM given as follows:

to N to V

from start .8 .2
from N .4 .6
from V .8 .2

Transitions

deal fail talks

N .2 .05 .2
V .3 .3 .3

Emissions

32 / 45

The Viterbi matrix

deal talks fail

N

V

to N to V
from start .8 .2

from N .4 .6
from V .8 .2

Transitions

deal fail talks
N .2 .05 .2
V .3 .3 .3

Emissions

Table(T , i + 1)← max
T ′

Table(T ′, i)× p(T |T ′)× p(wi+1|T)

33 / 45

The Viterbi matrix

deal talks fail

N .8x.2 = .16 ← .16x.4x.2 = .0128 ↙ .0288x.8x.05 = .001152
(since .16x.4 > .06x.8) (since .0128x.4 < 0.0288x.8)

V .2x.3 = .06 ↖ .16x.6x.3 = .0288 ↖ .0128x.6x.3 = .002304
(since .16x.6 > .06x.2) (since .0128x.6 > 0.0288x.2)

Looking at the highest probability entry in the final column and
chasing the backpointers, we see that the tagging N N V wins.

34 / 45

The Viterbi Algorithm: second example

q4 NN 0

q3 TO 0

q2 VB 0

q1 PRP 0

qo start 1.0

<s> I want to race
w1 w2 w3 w4

For each state qj at time i , compute

vi (j) =
n

max
k=1

vi−1(k)akjbj(wi)

35 / 45

The Viterbi Algorithm

q4 NN 0
q3 TO 0
q2 VB 0
q1 PRP 0
qo start 1.0

<s> I want to race
w1 w2 w3 w4

1 Create probability matrix, with one column for each
observation (i.e., word token), and one row for each non-start
state (i.e., POS tag).

2 We proceed by filling cells, column by column.

3 The entry in column i , row j will be the probability of the
most probable route to state qj that emits w1 . . .wi .

36 / 45

The Viterbi Algorithm

q4 NN 0 1.0× .041× 0

q3 TO 0 1.0× .0043× 0

q2 VB 0 1.0× .19× 0

q1 PRP 0 1.0× .67× .37

qo start 1.0

<s> I want to race
w1 w2 w3 w4

For each state qj at time i , compute

vi (j) =
n

max
k=1

vi−1(k)akjbj(wi)

vi−1(k) is previous Viterbi path probability, akj is
transition probability, and bj(wi) is emission probability.

There’s also an (implicit) backpointer from cell (i , j) to the
relevant (i − 1, k), where k maximizes vi−1(k)akj .

37 / 45

The Viterbi Algorithm

q4 NN 0 0 .025× .0012× 0.000054

q3 TO 0 0 .025× .00079× 0

q2 VB 0 0 .025× .23× .0093

q1 PRP 0 .025 .025× .00014× 0

q0 start 1.0

<s> I want to race
w1 w2 w3 w4

For each state qj at time i , compute

vi (j) =
n

max
k=1

vi−1(k)akjbj(wi)

vi−1(k) is previous Viterbi path probability, akj is
transition probability, and bj(wi) is emission probability.

There’s also an (implicit) backpointer from cell (i , j) to the
relevant (i − 1, k), where k maximizes vi−1(k)akj .

38 / 45

The Viterbi Algorithm

q4 NN 0 0 .000000002 .000053× .047× 0

q3 TO 0 0 0 .000053× .035× .99

q2 VB 0 0 .00053 .000053× .0038× 0

q1 PRP 0 .025 0 .000053× .0070× 0

q0 start 1.0

<s> I want to race
w1 w2 w3 w4

For each state qj at time i , compute

vi (j) =
n

max
k=1

vi−1(k)akjbj(wi)

vi−1(k) is previous Viterbi path probability, akj is
transition probability, and bj(wi) is emission probability.

There’s also an (implicit) backpointer from cell (i , j) to the
relevant (i − 1, k), where k maximizes vi−1(k)akj .

39 / 45

The Viterbi Algorithm

q4 NN 0 0 .0000000020 .0000018× .00047× .00057

q3 TO 0 0 0 .0000018.0000018×0×0

q2 VB 0 0 .00053 0 .0000018×.83×.00012

q1 PRP0 .025 0 0 .0000018× 0× 0

q0 start1.0
<s> I want to race

w1 w2 w3 w4

For each state qj at time i , compute

vi (j) =
n

max
k=1

vi−1(k)akjbj(wi)

vi−1(k) is previous Viterbi path probability, akj is
transition probability, and bj(wi) is emission probability.

There’s also an (implicit) backpointer from cell (i , j) to the
relevant (i − 1, k), where k maximizes vi−1(k)akj .

40 / 45

The Viterbi Algorithm

q4 NN 0 0 .000000002 0 4.8222e-13

q3 TO 0 0 0 .0000018 0

q2 VB 0 0 .00053 0 1.7928e-10

q1 PRP 0 .025 0 0 0

q0 start 1.0

<s> I want to race
w1 w2 w3 w4

For each state qj at time i , compute

vi (j) =
n

max
k=1

vi−1(k)akjbj(wi)

vi−1(k) is previous Viterbi path probability, akj is
transition probability, and bj(wi) is emission probability.

There’s also an (implicit) backpointer from cell (i , j) to the
relevant (i − 1, k), where k maximizes vi−1(k)akj .

41 / 45

Connection between HMMs and finite state machines

Hidden Markov models are finite state machines with probabilities
added to them.

If we think of finite state automaton as generating a string when
randomly going through states (instead of scanning a string), then
hidden Markov models are such FSMs where there is a specific
probability for generating each symbol at each state, and a specific
probability for transitioning from one state to another.

As such, the Viterbi algorithm can be used to find the most likely
sequence of states in a probabilistic FSM, given a specific input
string.

Question: where do the probabilities come from?

42 / 45

Example Demo

http://nlp.stanford.edu:8080/parser/

Relies both on “distributional” and “morphological” criteria

Uses a model similar to hidden Markov models

43 / 45

http://nlp.stanford.edu:8080/parser/

Rule-based Tagging

Basic idea:

1 Assign each token all its possible tags.

2 Apply rules that eliminate all tags for a token that are
inconsistent with its context.

Example

the DT (determiner)
can MD (modal)

NN (sg noun)
VB (base verb)

⇒

the DT (determiner)
can MD (modal) X

NN (sg noun)
√

VB (base verb) X

Assign any unknown word tokens a tag that is consistent with its
context (eg, the most frequent tag).

44 / 45

Rule-based tagging

Rule-based tagging often used a large set of hand-crafted
context-sensitive rules.

Example (schematic):

if (-1 DT) /* if previous word is a determiner */
elim MD, VB /* eliminate modals and base verbs */

Problem: Cannot eliminate all POS ambiguity.

45 / 45

	Automatic POS tagging: the problem
	Methods for tagging
	Unigram tagging
	Bigram tagging
	Tagging using Hidden Markov Models: Viterbi algorithm
	Rule-based Tagging

