
Automatic POS tagging: the problem
Methods for tagging

Part of Speech Tagging
Informatics 2A: Lecture 16

John Longley

School of Informatics
University of Edinburgh

23 October 2014

Informatics 2A: Lecture 16 Part of Speech Tagging 1

Automatic POS tagging: the problem
Methods for tagging

1 Automatic POS tagging: the problem

2 Methods for tagging
Unigram tagging
Bigram tagging
Tagging using Hidden Markov Models: Viterbi algorithm

Reading: Jurafsky & Martin, chapters (5 and) 6.

Informatics 2A: Lecture 16 Part of Speech Tagging 2

Automatic POS tagging: the problem
Methods for tagging

Benefits of Part of Speech Tagging

Essential preliminary to (anything that involves) parsing.

Can help with speech synthesis. For example, try saying the
sentences below out loud.

Can help with determining authorship: are two given
documents written by the same person? Forensic linguistics.

1 Have you read ‘The Wind in the Willows’? (noun)

2 The clock has stopped. Please wind it up. (verb)

3 The students tried to protest. (verb)

4 The students’ protest was successful. (noun)

Informatics 2A: Lecture 16 Part of Speech Tagging 3

Automatic POS tagging: the problem
Methods for tagging

Corpus annotation

A corpus (plural corpora) is a computer-readable collection of NL
text (or speech) used as a source of information about the
language: e.g. what words/constructions can occur in practice, and
with what frequencies.
The usefulness of a corpus can be enhanced by annotating each
word with a POS tag, e.g.

Our/PRP\$ enemies/NNS are/VBP innovative/JJ and/CC
resourceful/JJ ,/, and/CC so/RB are/VB we/PRP ./.
They/PRP never/RB stop/VB thinking/VBG about/IN new/JJ
ways/NNS to/TO harm/VB our/PRP\$ country/NN and/CC
our/PRP\$ people/NN, and/CC neither/DT do/VB we/PRP ./.

Typically done by an automatic tagger, then hand-corrected by a
native speaker, in accordance with specified tagging guidelines.

Informatics 2A: Lecture 16 Part of Speech Tagging 4

Automatic POS tagging: the problem
Methods for tagging

POS tagging: difficult cases

Even for humans, tagging sometimes poses difficult decisions.
Various tests can be applied, but they don’t always yield clear
answers.
E.g. Words in -ing: adjectives (JJ), or verbs in gerund form (VBG)?
a boring/JJ lecture a very boring lecture

? a lecture that bores
the falling/VBG leaves *the very falling leaves

the leaves that fall
a revolving/VBG? door *a very revolving door

a door that revolves
*the door seems revolving

sparkling/JJ? lemonade ? very sparkling lemonade
lemonade that sparkles
the lemonade seems sparkling

In view of such problems, we can’t expect 100% accuracy from an
automatic tagger.

Informatics 2A: Lecture 16 Part of Speech Tagging 5

Automatic POS tagging: the problem
Methods for tagging

Word types and tokens

Need to distinguish word tokens (particular occurrences in a
text) from word types (distinct vocabulary items).
We’ll count different inflected or derived forms (e.g. break,
breaks, breaking) as distinct word types.
A single word type (e.g. still) may appear with several POS.
But most words have a clear most frequent POS.

Question: How many tokens and types in the following? Ignore
case and punctuation.

Esau sawed wood. Esau Wood would saw wood. Oh, the
wood Wood would saw!

1 14 tokens, 6 types
2 14 tokens, 7 types
3 14 tokens, 8 types
4 None of the above.

Informatics 2A: Lecture 16 Part of Speech Tagging 6

Automatic POS tagging: the problem
Methods for tagging

Extent of POS Ambiguity

The Brown corpus (1,000,000 word tokens) has 39,440 different
word types.

35340 have only 1 POS tag anywhere in corpus (89.6%)

4100 (10.4%) have 2 to 7 POS tags

So why does just 10.4% POS-tag ambiguity by word type lead to
difficulty?
This is thanks to Zipfian distribution: many high-frequency words
have more than one POS tag.
In fact, more than 40% of the word tokens are ambiguous.

He wants to/TO go.
He went to/IN the store.

He wants that/DT hat.
It is obvious that/CS he wants a hat.
He wants a hat that/WPS fits.

Informatics 2A: Lecture 16 Part of Speech Tagging 7

Automatic POS tagging: the problem
Methods for tagging

Unigram tagging
Bigram tagging
Tagging using Hidden Markov Models: Viterbi algorithm

Some tagging strategies

We’ll look at several methods or strategies for automatic tagging.

One simple strategy: just assign to each word its most
common tag. (So still will always get tagged as an adverb —
never as a noun, verb or adjective.) Call this unigram tagging,
since we only consider one token at a time.

Surprisingly, even this crude approach typically gives around
90% accuracy. (State-of-the-art is 96–98%).

Can we do better? We’ll look briefly at bigram tagging, then
at Hidden Markov Model tagging.

Informatics 2A: Lecture 16 Part of Speech Tagging 8

Automatic POS tagging: the problem
Methods for tagging

Unigram tagging
Bigram tagging
Tagging using Hidden Markov Models: Viterbi algorithm

Bigram tagging

We can do much better by looking at pairs of adjacent tokens.
For each word (e.g. still), tabulate the frequencies of each possible
POS given the POS of the preceding word.

Example (with made-up numbers):

still DT MD JJ . . .

NN 8 0 6
JJ 23 0 14

VB 1 12 2
RB 6 45 3

Given a new text, tag the words from left to right, assigning each
word the most likely tag given the preceding one.

Could also consider trigram (or more generally n-gram) tagging,
etc. But the frequency matrices would quickly get very large, and
also (for realistic corpora) too ‘sparse’ to be really useful.

Informatics 2A: Lecture 16 Part of Speech Tagging 9

Automatic POS tagging: the problem
Methods for tagging

Unigram tagging
Bigram tagging
Tagging using Hidden Markov Models: Viterbi algorithm

Problems with bigram tagging

One incorrect tagging choice might have knock-on effects:

The still smoking remains of the campfire
Intended: DT RB VBG NNS IN DT NN

Bigram: DT JJ NN VBZ . . .

No lookahead: choosing the ‘most probable’ tag at one stage
might lead to highly improbable choice later.

The still was smashed
Intended: DT NN VBD VBN

Bigram: DT JJ VBD?

We’d prefer to find the overall most likely tagging sequence given
the bigram frequencies. This is what the Hidden Markov Model
(HMM) approach achieves.

Informatics 2A: Lecture 16 Part of Speech Tagging 10

Automatic POS tagging: the problem
Methods for tagging

Unigram tagging
Bigram tagging
Tagging using Hidden Markov Models: Viterbi algorithm

Hidden Markov Models

The idea is to model the agent that might have generated the
sentence by a semi-random process that outputs a sequence of
words.

Think of the output as visible to us, but the internal states of
the process (which contain POS information) as hidden.

For some outputs, there might be several possible ways of
generating them i.e. several sequences of internal states. Our
aim is to compute the sequence of hidden states with the
highest probability.

Specifically, our processes will be ‘NFAs with probabilities’.
Simple, though not a very flattering model of human language
users!

Informatics 2A: Lecture 16 Part of Speech Tagging 11

Automatic POS tagging: the problem
Methods for tagging

Unigram tagging
Bigram tagging
Tagging using Hidden Markov Models: Viterbi algorithm

Definition of Hidden Markov Models

For our purposes, a Hidden Markov Model (HMM) consists of:

A set Q = {q0, q1, . . . , qn} of states, with q0 the start state.
(Our non-start states will correspond to parts-of-speech).

A transition probability matrix
A = (aij | 0 ≤ i ≤ n, 1 ≤ j ≤ n), where aij is the probability of

jumping from qi to qj . For each i , we require
n∑

j=1
aij = 1.

For each non-start state qi and word type w , an emission
probability bi (w) of outputting w upon entry into qi . (Ideally,
for each i , we’d have

∑
w bi (w) = 1.)

We also suppose we’re given an observed sequence w1, w2 . . . , wT

of word tokens generated by the HMM.

Informatics 2A: Lecture 16 Part of Speech Tagging 12

Automatic POS tagging: the problem
Methods for tagging

Unigram tagging
Bigram tagging
Tagging using Hidden Markov Models: Viterbi algorithm

Transition Probabilities

Informatics 2A: Lecture 16 Part of Speech Tagging 13

Automatic POS tagging: the problem
Methods for tagging

Unigram tagging
Bigram tagging
Tagging using Hidden Markov Models: Viterbi algorithm

Emission Probabilities

Informatics 2A: Lecture 16 Part of Speech Tagging 14

Automatic POS tagging: the problem
Methods for tagging

Unigram tagging
Bigram tagging
Tagging using Hidden Markov Models: Viterbi algorithm

Transition and Emission Probabilities

VB TO NN PPPS
<s> .019 .0043 .041 .67
VB .0038 .035 .047 .0070
TO .83 0 .00047 0
NN .0040 .016 .087 .0045
PPPS .23 .00079 .001 .00014

I want to race
VB 0 .0093 0 .00012
TO 0 0 .99 0
BB 0 .000054 0 .00057
PPSS .37 0 0 0

Informatics 2A: Lecture 16 Part of Speech Tagging 15

Automatic POS tagging: the problem
Methods for tagging

Unigram tagging
Bigram tagging
Tagging using Hidden Markov Models: Viterbi algorithm

How Do we Search for Best Tag Sequence?

We have defined an HMM, but how do we use it? We are given a
word sequence and must find their corresponding tag sequence.

It’s easy to compute the probability of generating a word
sequence w1 . . . wT via a specific tag sequence t1 . . . tT : let t0
denote the start state, and compute

n∏
i=1

P(ti |ti−1).P(wi |ti) (1)

using the transition and emission probabilities.

But how do we find the most likely tag sequence?

We can do this efficiently using dynamic programming and
the Viterbi algorithm.

Informatics 2A: Lecture 16 Part of Speech Tagging 16

Automatic POS tagging: the problem
Methods for tagging

Unigram tagging
Bigram tagging
Tagging using Hidden Markov Models: Viterbi algorithm

Question

Given n word tokens and on average T choices per token, how
many tag sequences do we have to evaluate?

1 |T | tag sequences

2 n tag sequences

3 |T | × n tag sequences

4 |T |n tag sequences

Informatics 2A: Lecture 16 Part of Speech Tagging 17

Automatic POS tagging: the problem
Methods for tagging

Unigram tagging
Bigram tagging
Tagging using Hidden Markov Models: Viterbi algorithm

The HMM trellis

NN

TO

VB

PP
SS

NN

TO

VB

NN

TO

VB

NN

TO

VB

PP
SS

PP
SS

PP
SS

START

I want to race

Informatics 2A: Lecture 16 Part of Speech Tagging 18

Automatic POS tagging: the problem
Methods for tagging

Unigram tagging
Bigram tagging
Tagging using Hidden Markov Models: Viterbi algorithm

The Viterbi Algorithm

q4 NN 0
q3 TO 0
q2 VB 0
q1 PPSS 0
qo start 1.0

<s> I want to race
w1 w2 w3 w4

1 Create probability matrix, with one column for each
observation (i.e., word token), and one row for each non-start
state (i.e., POS tag).

2 We proceed by filling cells, column by column.

3 The entry in column i , row j will be the probability of the
most probable route to state qj that emits w1 . . . wi .

Informatics 2A: Lecture 16 Part of Speech Tagging 19

Automatic POS tagging: the problem
Methods for tagging

Unigram tagging
Bigram tagging
Tagging using Hidden Markov Models: Viterbi algorithm

The Viterbi Algorithm

q4 NN 0 1.0× .041× 0

q3 TO 0 1.0× .0043× 0

q2 VB 0 1.0× .19× 0

q1 PPSS 0 1.0× .67× .37

qo start 1.0

<s> I want to race
w1 w2 w3 w4

For each state qj at time i , compute

vi (j) =
n

max
k=1

vi−1(k)akjbj(wi)

vi−1(k) is previous Viterbi path probability, akj is
transition probability, and bj(wi) is emission probability.

There’s also an (implicit) backpointer from cell (i , j) to the
relevant (i − 1, k), where k maximizes vi−1(k)akj .

Informatics 2A: Lecture 16 Part of Speech Tagging 20

Automatic POS tagging: the problem
Methods for tagging

Unigram tagging
Bigram tagging
Tagging using Hidden Markov Models: Viterbi algorithm

The Viterbi Algorithm

q4 NN 0 0 .025× .0012× 0.000054

q3 TO 0 0 .025× .00079× 0

q2 VB 0 0 .025× .23× .0093

q1 PPSS 0 .025 .025× .00014× 0

q0 start 1.0

<s> I want to race
w1 w2 w3 w4

For each state qj at time i , compute

vi (j) =
n

max
k=1

vi−1(k)akjbj(wi)

vi−1(k) is previous Viterbi path probability, akj is
transition probability, and bj(wi) is emission probability.

There’s also an (implicit) backpointer from cell (i , j) to the
relevant (i − 1, k), where k maximizes vi−1(k)akj .

Informatics 2A: Lecture 16 Part of Speech Tagging 21

Automatic POS tagging: the problem
Methods for tagging

Unigram tagging
Bigram tagging
Tagging using Hidden Markov Models: Viterbi algorithm

The Viterbi Algorithm

q4 NN 0 0 .000000002 .000053× .047× 0

q3 TO 0 0 0 .000053× .035× .99

q2 VB 0 0 .00053 .000053× .0038× 0

q1 PPSS 0 .025 0 .000053× .0070× 0

q0 start 1.0

<s> I want to race
w1 w2 w3 w4

For each state qj at time i , compute

vi (j) =
n

max
k=1

vi−1(k)akjbj(wi)

vi−1(k) is previous Viterbi path probability, akj is
transition probability, and bj(wi) is emission probability.

There’s also an (implicit) backpointer from cell (i , j) to the
relevant (i − 1, k), where k maximizes vi−1(k)akj .

Informatics 2A: Lecture 16 Part of Speech Tagging 22

Automatic POS tagging: the problem
Methods for tagging

Unigram tagging
Bigram tagging
Tagging using Hidden Markov Models: Viterbi algorithm

The Viterbi Algorithm

q4 NN 0 0 .0000000020 .0000018× .00047× .00057

q3 TO 0 0 0 .0000018.0000018×0×0

q2 VB 0 0 .00053 0 .0000018×.83×.00012

q1 PPSS0 .025 0 0 .0000018× 0× 0

q0 start 1.0

<s> I want to race
w1 w2 w3 w4

For each state qj at time i , compute

vi (j) =
n

max
k=1

vi−1(k)akjbj(wi)

vi−1(k) is previous Viterbi path probability, akj is
transition probability, and bj(wi) is emission probability.

There’s also an (implicit) backpointer from cell (i , j) to the
relevant (i − 1, k), where k maximizes vi−1(k)akj .

Informatics 2A: Lecture 16 Part of Speech Tagging 23

Automatic POS tagging: the problem
Methods for tagging

Unigram tagging
Bigram tagging
Tagging using Hidden Markov Models: Viterbi algorithm

The Viterbi Algorithm

q4 NN 0 0 .000000002 0 4.8222e-13

q3 TO 0 0 0 .0000018 0

q2 VB 0 0 .00053 0 1.7928e-10

q1 PPSS 0 .025 0 0 0

q0 start 1.0

<s> I want to race
w1 w2 w3 w4

For each state qj at time i , compute

vi (j) =
n

max
k=1

vi−1(k)akjbj(wi)

vi−1(k) is previous Viterbi path probability, akj is
transition probability, and bj(wi) is emission probability.

There’s also an (implicit) backpointer from cell (i , j) to the
relevant (i − 1, k), where k maximizes vi−1(k)akj .

Informatics 2A: Lecture 16 Part of Speech Tagging 24

Automatic POS tagging: the problem
Methods for tagging

Unigram tagging
Bigram tagging
Tagging using Hidden Markov Models: Viterbi algorithm

The Viterbi algorithm: second example

Let’s now tag the newspaper headline:

deal talks fail

Note that each token here could be a noun (N) or a verb (V).
We’ll use a toy HMM given as follows:

to N to V

from start .8 .2
from N .4 .6
from V .8 .2

Transitions

deal fail talks

N .2 .05 .2
V .3 .3 .3

Emissions

Informatics 2A: Lecture 16 Part of Speech Tagging 25

Automatic POS tagging: the problem
Methods for tagging

Unigram tagging
Bigram tagging
Tagging using Hidden Markov Models: Viterbi algorithm

The Viterbi matrix

This time we’ll omit the (trivial) first column, but show more of
the working, as well as the backtrace pointers.

deal talks fail

N .8x.2 = .16 ← .16x.4x.2 = .0128 ↙ .0288x.8x.05 = .001152
(since .16x.4 > .06x.8) (since .0128x.4 < 0.0288x.8)

V .2x.3 = .06 ↖ .16x.6x.3 = .0288 ↖ .0128x.6x.3 = .002304
(since .16x.6 > .06x.2) (since .0128x.6 > 0.0288x.2)

Looking at the highest probability entry in the final column and
chasing the backpointers, we see that the tagging N N V wins.

Informatics 2A: Lecture 16 Part of Speech Tagging 26

	Automatic POS tagging: the problem
	Methods for tagging
	Unigram tagging
	Bigram tagging
	Tagging using Hidden Markov Models: Viterbi algorithm

