
Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

Morphology parsing
Informatics 2A: Lecture 14

John Longley

School of Informatics
University of Edinburgh
jrl@inf.ed.ac.uk

17 October 2014

1 / 15

jrl@inf.ed.ac.uk

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

1 Morphology parsing: the problem

2 Finite-state transducers

3 FSTs for morphology parsing and generation

(This lecture is taken almost directly from Jurafsky & Martin
chapter 3, sections 1–7.)

2 / 15

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

Morphological parsing: the problem

In many languages, words can be made up of a main stem
(carrying the basic dictionary meaning) plus one or more affixes
carrying grammatical information. E.g. in English:

Surface form: cats walking smoothest
Lexical form: cat+N+PL walk+V+PresPart smooth+Adj+Sup

Morphological parsing is the problem of extracting the lexical form
from the surface form. (For speech processing, this includes
identifying the word boundaries.)

We should take account of:

Irregular forms (e.g. goose → geese)

Systematic rules (e.g. ‘e’ inserted before suffix ‘s’ after
s,x,z,ch,sh: fox → foxes, watch → watches)

3 / 15

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

Why bother?

Any NLP tasks involving grammatical parsing will typically
involve morphology parsing as a prerequisite.

Search engines: e.g. a search for ’fox’ should return
documents containing ’foxes’, and vice versa.

Even a humble task like spell checking can benefit: e.g. is
‘walking’ a possible word form?

But why not just list all derived forms separately in our wordlist
(e.g. walk, walks, walked, walking)?

Might be OK for English, but not for a morphologically rich
language — e.g. in Turkish, can pile up to 10 suffixes on a
verb stem, leading to 40,000 possible forms for some verbs!

Even for English, morphological parsing makes
adding/learning new words easier.

In speech processing, word breaks aren’t known in advance.
4 / 15

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

Parsing and generation

Parsing here means going from the surface to the lexical form.
E.g. foxes → fox +N +PL.

Generation is the opposite process: fox +N +PL → foxes. It’s
helpful to consider these two processes together.

Either way, it’s often useful to proceed via an intermediate form,
corresponding to an analysis in terms of morphemes (= minimal
meaningful units) before orthographic rules are applied.

Surface form: foxes
Intermediate form: fox ˆ s #
Lexical form: fox +N +PL

(̂ means morpheme boundary, # means word boundary.)

N.B. The translation between surface and intermediate form is
exactly the same if ‘foxes’ is a 3rd person singular verb!

5 / 15

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

Finite-state transducers

We can consider ε-NFAs (over an alphabet Σ) in which transitions
may also (optionally) produce output symbols (over a possibly
different alphabet Π).

E.g. consider the following machine with input alphabet {a, b} and
output alphabet {0, 1}:

a:0 a:1

b: ε

b: ε

Such a thing is called a finite state transducer.
In effect, it specifies a (possibly multi-valued) translation from one
regular language to another.

6 / 15

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

Clicker exercise

a:0 a:1

b: ε

b: ε

What output will this produce, given the input aabaaabbab?

1 001110

2 001111

3 0011101

4 More than one output is possible.

7 / 15

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

Formal definition

Formally, a finite state transducer T with inputs from Σ and
outputs from Π consists of:

sets Q, S , F as in ordinary NFAs,

a transition relation ∆ ⊆ Q × (Σ∪{ε})× (Π∪{ε})× Q

From this, one can define a many-step transition relation
∆̂ ⊆ Q × Σ∗ × Π∗ × Q, where (q, x , y , q′) ∈ ∆̂ means “starting
from state q, the input string x can be translated into the output
string y , ending up in state q′.” (Details omitted.)

Note that a finite state transducer can be run in either direction!
From T as above, we can obtain another transducer T just by
swapping the roles of inputs and outputs.

8 / 15

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

Stage 1: From lexical to intermediate form

Consider the problem of translating a lexical form like ‘fox+N+PL’
into an intermediate form like ‘fox ˆ s # ’, taking account of
irregular forms like goose/geese.

We can do this with a transducer of the following schematic form:

+N: ε

+N: ε

+N: ε

regular noun
(copied to output)

(copied to output)

irregular noun

irregular noun
(replaced by plural)

+PL : ^s#

+SG : #

+SG : #

+PL : #

We treat each of +N, +SG, +PL as a single symbol.
The ‘transition’ labelled +PL : ŝ# abbreviates three transitions:
+PL : ,̂ ε : s, ε : #. 9 / 15

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

The Stage 1 transducer fleshed out

The left hand part of the preceding diagram is an abbreviation for
something like this (only a small sample shown):

o:e

o:e

e

g o o s e

s

f

c
a

t

o x

Here, for simplicity, a single label u abbreviates u : u.

10 / 15

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

Stage 2: From intermediate to surface form

To convert a sequence of morphemes to surface form, we apply a
number of orthographic rules such as the following.

E-insertion: Insert e after s,z,x,ch,sh before a word-final
morpheme -s. (fox → foxes)

E-deletion: Delete e before a suffix beginning with e,i.
(love → loving)

Consonant doubling: Single consonants b,s,g,k,l,m,n,p,r,s,t,v
are doubled before suffix -ed or -ing. (beg → begged)

We shall consider a simplified form of E-insertion, ignoring ch,sh.

(Note that this rule is oblivious to whether -s is a plural noun suffix
or a 3rd person verb suffix.)

11 / 15

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

A transducer for E-insertion (adapted from J+M)

^: ε
^: ε

^: ε

?

z,s,x
s

z,x

:eε s
1 4

5

2 3

#

0 0’

?

?

?

?

#

z,s,x
z,s,x

Here ? may stand for any symbol except z,s,x,̂ ,#.
(Treat # as a ‘visible space character’.)

At a morpheme boundary following z,s,x, we arrive in State 2.
If the ensuing input sequence is s#, our only option is to go via
states 3 and 4. Note that there’s no #-transition out of State 5.

State 5 allows e.g. ‘ex̂ servicê men#’ to be translated to
‘exservicemen’.

12 / 15

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

Putting it all together

FSTs can be cascaded: output from one can be input to another.

To go from lexical to surface form, use ‘Stage 1’ transducer
followed by a bunch of orthographic rule transducers like the
above. (Made more efficient by back-end compilation into one
single transducer.)

The results of this generation process are typically deterministic
(each lexical form gives a unique surface form), even though our
transducers make use of non-determinism along the way.

Running the same cascade backwards lets us do parsing (surface to
lexical form). Because of ambiguity, this process is frequently
non-deterministic: e.g. ‘foxes’ might be analysed as fox+N+PL or
fox+V+Pres+3SG.

Such ambiguities are not resolved by morphological parsing itself:
left to a later processing stage.

13 / 15

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

Clicker exercise 2

^: ε
^: ε

^: ε

?

z,s,x
s

z,x

:eε s
1 4

5

2 3

#

0 0’

?

?

?

?

#

z,s,x
z,s,x

Apply this backwards to translate from surface to int. form.

Starting from state 0, how many sequences of transitions are
compatible with the input string ‘asses’ ?

1 1
2 2
3 3
4 4
5 More than 4

14 / 15

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

Solution

^: ε
^: ε

^: ε

?

z,s,x
s

z,x

:eε s
1 4

5

2 3

#

0 0’

?

?

?

?

#

z,s,x
z,s,x

On the input string ‘asses’, 10 transition sequences are possible!

0
a→ 0′ s→ 1

s→ 1
ε→ 2

e→ 3
s→ 4, output asŝ s

0
a→ 0′ s→ 1

s→ 1
ε→ 2

e→ 0′ s→ 1, output asŝ es

0
a→ 0′ s→ 1

s→ 1
e→ 0′ s→ 1, output asses

0
a→ 0′ s→ 1

ε→ 2
s→ 5

ε→ 2
e→ 3

s→ 4, output aŝ ŝ s

0
a→ 0′ s→ 1

ε→ 2
s→ 5

ε→ 2
e→ 0′ s→ 1, output aŝ ŝ es

0
a→ 0′ s→ 1

ε→ 2
s→ 5

e→ 0′ s→ 1, output aŝ ses

Four of these can also be followed by 1
ε→ 2 (output)̂. 15 / 15

	Morphology parsing: the problem
	Finite-state transducers
	FSTs for morphology parsing and generation

