
Types in Programming Languages
Types in Natural Language

Types

Informatics 2A: Lecture 20

Mirella Lapata (slides by SA, BW, JL)

School of Informatics

University of Edinburgh

12 November 2010

1 / 21

Types in Programming Languages
Types in Natural Language

Introduction
Types and Type Systems
Types and Expressions
Type Structures

A variety of things

Programming languages (particularly OO languages) give us
the means to model things in the world.

In OO languages, a class represents a whole family of possible
objects corresponding to things of some particular kind
(e.g., Student, Degree Programme, Start Date).

In a computer, all kinds of data are represented by bit
sequences (0s and 1s); but for different kinds of things, the
representations may overlap.

Sometimes this is tolerated: e.g., in C or Smalltalk we can be
rather casual about representations.

At other times, we want to keep track of the kind of thing
we’re working with. A type system is the usual way to do this.

2 / 21

Types in Programming Languages
Types in Natural Language

Introduction
Types and Type Systems
Types and Expressions
Type Structures

The potential for error

In programming languages, we have means of transforming
data. The addition operation that takes two numbers and
gives us back a new number.

Transformations often only make sense on some kinds of data.
E.g., what does “3 + false” mean?

So unless we check we are applying transformations to the
right kind of thing, there is a potential to introduce
information that doesn’t really make sense.

We often don’t notice this until long after the first piece of
rubbish is created, so it can be hard to track down such errors.

3 / 21

Types in Programming Languages
Types in Natural Language

Introduction
Types and Type Systems
Types and Expressions
Type Structures

The potential for error

In programming languages, we have means of transforming
data. The addition operation that takes two numbers and
gives us back a new number.

Transformations often only make sense on some kinds of data.
E.g., what does “3 + false” mean?

So unless we check we are applying transformations to the
right kind of thing, there is a potential to introduce
information that doesn’t really make sense.

We often don’t notice this until long after the first piece of
rubbish is created, so it can be hard to track down such errors.

So how do we go about reducing error?

3 / 21



Types in Programming Languages
Types in Natural Language

Introduction
Types and Type Systems
Types and Expressions
Type Structures

Reducing error

Laissez faire: even if a transformation is not well defined for the
data it’s being used on, just go ahead and see what happens — in
some cases it might be useful. (Common in C.)

Dynamic checking: system tags all representations with a record
of what they’re intended to represent, and all transformations
check they’re being applied to the right kind of thing. Then we can
give better runtime errors. (Common in Python.)

Static Checking: define rules for the language that ensure a range
of type errors cannot occur. A type error is where a transformation
is applied to the wrong kind of thing. (Typical of Java or Haskell.)

4 / 21

Types in Programming Languages
Types in Natural Language

Introduction
Types and Type Systems
Types and Expressions
Type Structures

Reducing error

Laissez faire: even if a transformation is not well defined for the
data it’s being used on, just go ahead and see what happens — in
some cases it might be useful. (Common in C.)

Dynamic checking: system tags all representations with a record
of what they’re intended to represent, and all transformations
check they’re being applied to the right kind of thing. Then we can
give better runtime errors. (Common in Python.)

Static Checking: define rules for the language that ensure a range
of type errors cannot occur. A type error is where a transformation
is applied to the wrong kind of thing. (Typical of Java or Haskell.)

We’ll concentrate on static checking today — how to capture
aspects of the language that aren’t easily captured by CFGs.

4 / 21

Types in Programming Languages
Types in Natural Language

Introduction
Types and Type Systems
Types and Expressions
Type Structures

Types and Type Systems

A type

Is a collection of values (or the computer representation of those
values) all of which have some similarity in the roles they can play.
E.g., numbers, boolean truth values, characters, . . .

A type system

Defines a collection of atomic or basic types.

Provides ways of building complex types out of simple ones.

Allows us to assign a type to certain programming language
phrases, e.g. expressions. Expressions in programming
languages (e.g. x + 3, P & Q) are a way of talking about
values, and type systems allow us to say which type the value
should belong to.

5 / 21

Types in Programming Languages
Types in Natural Language

Introduction
Types and Type Systems
Types and Expressions
Type Structures

An Example Type System

Basic Types: bool (truth val), num (numbers), char (characters).

Type Constructors: operators that take types and combine them
to form more complex types. If A and B are types then:

Product: A × B is a type. Its values are pairs (a, b) where a

has type A and b has type B.

Sum: A + B is a type. Values are of the form i(a) or j(b),
where a has type A, b has type B.

List: List(A) is a type with sequences of values of type A.

Record: If A1, . . . ,Ak are types then {f1 : A1, . . . fk : Ak} is a
type whose values are labelled records with labels f1, . . . fk
Function: In languages where functions are “first-class
objects” (e.g. Haskell), the type of all functions (representable
in the language) from A to B is A → B.

6 / 21



Types in Programming Languages
Types in Natural Language

Introduction
Types and Type Systems
Types and Expressions
Type Structures

Connecting Types and Expressions in the Language

For the base types, we usually have some direct way of writing
down values. For example, tt: bool, ff: bool, 1: num, . . .

For the structured types:
if a : A, b : B, ai : Ai , 1 ≤ i ≤ k, b1 : B, . . . bn : B

then (a, b) : A × B, i(a) : A + B, [b1, . . . bn] : List(B),
{f1 = a1, . . . fk = ak} : {f1 : A1, . . . fk : Ak}

{place = {north = (55, 57), west = (3, 13)}, time = (6, (12, 07))}

has type

{place : {north : num × num,west : num × num},

time : num × (num × num)}

7 / 21

Types in Programming Languages
Types in Natural Language

Introduction
Types and Type Systems
Types and Expressions
Type Structures

Computing with structured values

For each of the ways of building up values of types, there is also a
way of taking them apart again:

for pairs: fst((x , y)) = x and snd(x , y) = y

for sums: case x in {i(a) ⇒ e1 | j(b) ⇒ e2}
for records: open x in {{f1 = x1, . . . fk = xk} ⇒ e}
for functions: f (x)

open x in
{ { place = a, time = b } ⇒

open a in
{ { north = c, west = d } ⇒

c
}

}
}

8 / 21

Types in Programming Languages
Types in Natural Language

Introduction
Types and Type Systems
Types and Expressions
Type Structures

Dealing with variables

Expressions often contain variables, e.g. x+1.

To deal with variables, we define the type of expressions
relative to an environment E that tells us the types of any
variables involved.

In the example, we ask the question: what is the type of x+1
when we know the environment is { x: num }

In this case the expression has type num.

What happens with {bool x; x = x+1; }?

9 / 21

Types in Programming Languages
Types in Natural Language

Introduction
Types and Type Systems
Types and Expressions
Type Structures

Functions

If we use fn to stand for the λ of Haskell, then if we are
trying to find a type for fn x.e in environment E we:

Find the type of e in the environment E augmented with
{x:A} for some appropriate type A

If e has type B in this environment then we can say fn x.e:

A->B in environment E.

We can express such ideas formally by means of typing rules:

E , x : A ⊢ e : B

E ⊢ fn x .e : A->B

E ⊢ f : A->B E ⊢ e : A

E ⊢ f (e) : B

Rules like this allow us to capture a lot of ‘rules of the
language’ that can’t (readily) be captured by CFGs alone.

10 / 21



Types in Programming Languages
Types in Natural Language

Introduction
Types and Type Systems
Types and Expressions
Type Structures

Structure in the basic types

Often in programming languages there is not much
relationship between the basic types.

But in some languages there can be: for example, if we had
two number types float and int standing for floating point
and integer numbers.Then anywhere we can use a float, we
can also use an int.

This is the beginning of the notion of subtyping. We write
int <: float to mean int is a subtype of float.
(Idea: anywhere a float is allowed, an int is allowed too).

These ideas extend to records where, in general:
{f1 : A1, . . . fk : Ak} :> {f1 : A1, . . . fk : Ak , b1, . . . bm : Am}.
(I.e., anywhere we can use something of the left hand type,
we can also use something of the right hand type.)

11 / 21

Types in Programming Languages
Types in Natural Language

Introduction
Types and Type Systems
Types and Expressions
Type Structures

Subtyping for function types

What relationship must hold between types to have
A → B <: C → D?

C <: A B <: D

A → B <: C → D

This sort of thing is relevant to understanding e.g., how method

overriding works in languages like Java.

12 / 21

Types in Programming Languages
Types in Natural Language

Types in NL Semantics
Subtypes in NL
Types as selectional restrictions

Agreement phenomena

In programming languages, typing rules can be used to enforce
type agreement between widely separated parts of a program.

(fn x. if x==1 then ...) (2)

There are similar phenomena in NL: constituents of a sentence
(often widely separated) may be constrained to agree on an
attribute such as person, number, gender.

You, I imagine, are unable to attend.

The hills are looking lovely today, aren’t they?

He came very close to injuring himself.

13 / 21

Types in Programming Languages
Types in Natural Language

Types in NL Semantics
Subtypes in NL
Types as selectional restrictions

Types in Natural Language Semantics

Types are also very useful if we wish to describe the semantics
(i.e., meaning) of natural languages. For example, we can use
types employed in logic to model the meanings of various NL
phrase types.

Basic Types

1 e — the type of real-world entities such as Inf2a, Stuart, John.

2 t — the type of facts with truth value like ‘Inf2a is amusing’.

These two basic types enable us to construct complex types using
e.g., the function type constructor.

14 / 21



Types in Programming Languages
Types in Natural Language

Types in NL Semantics
Subtypes in NL
Types as selectional restrictions

From basic to complex formal types

Complex Types

<e,t>: unary predicates – things that are functions from
entities to facts.

<e, <e,t>>: binary predicates – things that are functions
from entities to unary predicates.

<<e,t>, t>: type-raised entities – things that are functions
from unary predicates to truth values.

N.B. where computer scientists write σ → τ , linguists sometimes write < σ, τ >.

Inf2a, Stuart : e

enjoys : <e, <e,t>>

enjoys Inf2a, is amusing : <e,t>

Inf2a is amusing, Stuart enjoys Inf2a : t

every student : <<e,t>, t>
15 / 21

Types in Programming Languages
Types in Natural Language

Types in NL Semantics
Subtypes in NL
Types as selectional restrictions

Subtypes in NL

hamburger <: sandwich <: food item <: food

< substance <: matter <: physical entity <: entity

To deal with meanings in NL, much more fine-grained
classifications (of varying levels of specificity) are often useful.

There are also many other more abstract types of entities to
which a NL expression may refer: e.g., locations, points in
time, time spans, events, beliefs, desires, possibilities, . . .

This leads to a vast system of subtypes capturing information
about real-world concepts and their relationships.
(Cf. the WordNet database.)

16 / 21

Types in Programming Languages
Types in Natural Language

Types in NL Semantics
Subtypes in NL
Types as selectional restrictions

Selectional restrictions

We can often characterize verbs and other predicates in terms of
their selectional restrictions — constraints on the type of entities
or expression can serve as their arguments. arguments.

I want to eat somewhere close to Appleton Tower.

I want to eat some Thai food.

I want to eat some radio.

The object of eating is usually something edible: Its semantic
type is edible things.

The location of an event is usually a place: Its semantic type
is location.

17 / 21

Types in Programming Languages
Types in Natural Language

Types in NL Semantics
Subtypes in NL
Types as selectional restrictions

Selectional restrictions

Selectional restrictions are associated with word senses, not words:

Do any international airlines serve vegan meals?
(ie, provide food or drink)

Do any international airlines serve Edinburgh?

(ie, provide a service)

?? Do any international airlines serve Edinburgh and vegan
meals?

Selectional restrictions vary in their specificity:

object(imagine): a situation
object(diagonalise): a matrix

⇒ Verbs vary in the specificity of their argument types.
18 / 21



Types in Programming Languages
Types in Natural Language

Types in NL Semantics
Subtypes in NL
Types as selectional restrictions

Selectional restrictions and type coercion

Selectional restrictions can change the way we interpret a term:

Jane Austen wrote ‘Emma’.

I used to read Jane Austen a lot.

The chicken was domesticated in Asia.

The chicken was overcooked.

Metonymy is when the referent of a term changes to a related
entity, often associated with the demands of a verb’s selectional
restrictions.

19 / 21

Types in Programming Languages
Types in Natural Language

Types in NL Semantics
Subtypes in NL
Types as selectional restrictions

Clicker Questions

Which of the following is not a type for ostrich?

1 bird

2 vertebrate

3 artefact

4 animal

20 / 21

Types in Programming Languages
Types in Natural Language

Types in NL Semantics
Subtypes in NL
Types as selectional restrictions

Clicker Questions

Which of the following is not a type for ostrich?

1 bird

2 vertebrate

3 artefact

4 animal

Which is the correct type for the expression I love Inf2a!?

1 <e, <e,t>>

2 t

3 <<e,t>, t>

4 <e,t>

20 / 21

Types in Programming Languages
Types in Natural Language

Types in NL Semantics
Subtypes in NL
Types as selectional restrictions

Summary

Types help avoid failure in computation

We can use the structure of the program to check that type
constraints are being observed.

Type systems for programming languages can become quite
complex, particularly for OO and functional languages.

Types are also relevant in Natural Languages.

There are general types associated with syntax, and more
specific types associated with verb (predicate) arguments.

Type coercion is common in Natural Language, changing the
type (and often the referent) of an expression to one that fits
the verb (predicate) to which it serves as an argument.

21 / 21


