Earley Parsing Informatics 2A: Lecture 18

Mirella Lapata

School of Informatics University of Edinburgh mlap@inf.ed.ac.uk

27 October 2011

What is Wrong with CYK

- CYK Chart Entries
- Adding Prediction to the Chart

2 The Earley Parsing Algorithm

- The PREDICTOR Operator
- \bullet The ${\rm SCANNER}$ Operator
- The COMPLETER Operator
- Visualizing the Chart
- Comparing Earley and CYK

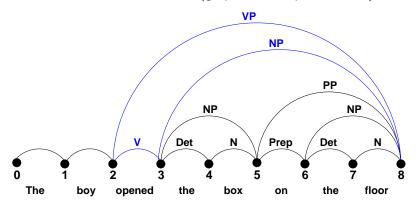
CYK Chart Entries Adding Prediction to the Chart

CYK Chart entries

The CYK algorithm avoids redundant work by storing in a chart all the constituents it finds.

- Populates the table with phantom constituents.
- These are constituents that cannot occur in the context they are being suggested.
- No justification for a chart entry why it was built.

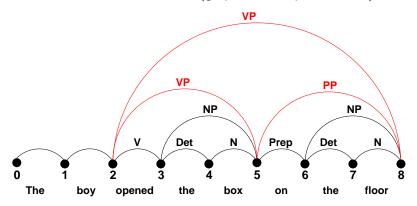
So if we have two VP rules:


 $\begin{array}{l} \mathsf{VP} \to \mathsf{V} \; \mathsf{NP} \\ \mathsf{VP} \to \mathsf{VP} \; \mathsf{PP} \end{array}$

and the input string The boy opened the box on the floor

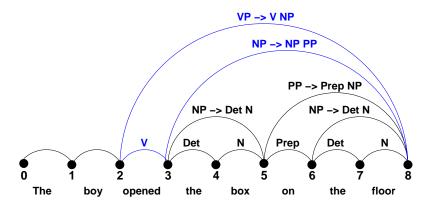
CYK Chart Entries Adding Prediction to the Chart

CYK Chart entries


We don't know which production the VP arc [2, 8] represents: $VP \rightarrow V NP$ or $VP \rightarrow VP PP$ (graph-based representation).

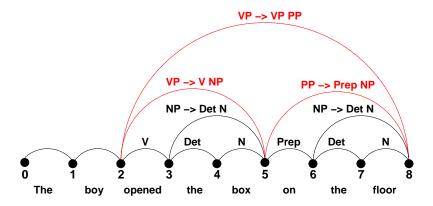
CYK Chart Entries Adding Prediction to the Chart

CYK Chart entries

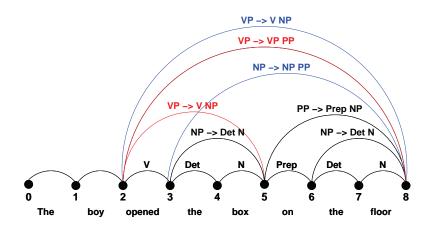

We don't know which production the VP arc [2, 8] represents: $VP \rightarrow V NP$ or $VP \rightarrow VP PP$ (graph-based representation).

CYK Chart Entries Adding Prediction to the Chart

CYK Chart entries


If the entire production were recorded, rather than just its LHS (ie, the constituent that it analyses), then we'd know.

CYK Chart Entries Adding Prediction to the Chart


CYK Chart entries

If the entire production were recorded, rather than just its LHS (ie, the constituent that it analyses), then we'd know.

CYK Chart Entries Adding Prediction to the Chart

Chart entries: Both analyses

Earley Parsing

Key idea: if we record completed productions (ie, ones whose entire RHS have been recognized), we could also consider recording incomplete productions (ie, ones for which there may so far be only partial evidence).

- Incomplete productions (aka incomplete constituents) are effectively predictions about what might come next and what will be learned from finding it.
- Incomplete constituents can be represented using an extended form of production rule called a dotted rule.
- The dot indicates how much of the RHS has already been found. The rest is a prediction of what is to come.

The PREDICTOR Operator The SCANNER Operator The COMPLETER Operator Visualizing the Chart Comparing Earley and CYK

Earley Parsing

- Allows arbitrary CFGs
- Top-down control
- Fills a table in a single sweep over the input
- Table is length N + 1; N is number of words
- Table entries represent:
 - Completed constituents and their locations
 - In-progress constituents
 - Predicted constituents

States

The table entries are called states and are represented with dotted-rules.

$S \rightarrow \bullet VP$ [0,0]	A VP is predicted at the start
	of the sentence
$NP \rightarrow Det \bullet Nominal$ [1,2]	An NP is in progress; seen Det,
	Nominal is expected
$VP \rightarrow V NP \bullet [0,3]$	A VP has been found starting
	at 0 and ending at 3

Once chart is populated there should be an S the final column that spans from 0 to N and is complete: $S \rightarrow \alpha \bullet [0, N]$. If that's the case you're done.

Sketch of Earley Algorithm

Sweep through the table from 0 to N:

- **(**) Predict all the states you can upfront, start top-down from S
- 2 Read a word
 - Extend states based on matches
 - **Or Generate** new predictions
 - Go to step 2
- When you are out of words, look at the chart to see if you have a winner

The algorithm uses three basic operations to process states in the chart: PREDICTOR and COMPLETER add states to the chart entry being processed; SCANNER adds a state to the next chart entry.

Predictor

- Creates new states representing top-down expectations
- Applied to any state that has a non-terminal immediately to its right other than a part-of-speech category
- Application results in creation of one new state for each alternative expansion of that non-terminal
- New states placed into same chart entry as generating state

$\mathcal{S} ightarrow \mathcal{VP}$, [0,0]				
VP	$\rightarrow ullet$	Verb, [0,0]		
$VP \rightarrow \bullet$ Verb NP, [0,0]				
VP	$VP \rightarrow \bullet$ Verb NP PP, [0,0]			
VP	$VP \rightarrow \bullet$ Verb PP, [0,0]			
$VP \rightarrow \bullet VP \ PP, \ [0,0]$				

Scanner

- Applies to states with a part-of-speech category to right of dot
- Incorportates into chart a state corresponding to prediction of a word with particular part-of-speech
- Creates new state from input state with dot advanced over predicted input category
- Unlike CYK, only parts-of-speech of a word that are predicted by some existing state will enter the chart (top-down input)

$$VP \rightarrow \bullet Verb NP$$
, [0,0]
 $VP \rightarrow book \bullet$, [0,1]

Completer

- Applied to state when its dot has reached right end of the rule
- This means that parser has successfully discovered a particular grammatical category over some span of the input
- COMPLETER finds and advances all previously created states that were looking for this category at this position in input
- Creates states copying the older state, advancing dot over expected category, and installing new state in chart

NP ightarrow Det Nominal $ullet$, [1,3]			
finds state	VP	\rightarrow	Verb ● NP, [0,1]
finds state	VP	\rightarrow	<i>Verb</i> • <i>NP PP</i> , [0,1]
adds complete state	VP	\rightarrow	Verb NP ●, [0,3]
adds incomplete state	VP	\rightarrow	Verb NP • PP, [0,3]

The PREDICTOR Operator The SCANNER Operator The COMPLETER Operator Visualizing the Chart Comparing Earley and CYK

The Earley Algorithm

function EARLEY-PARSE(words, grammar) returns chart

ENQUEUE($(\gamma \rightarrow \bullet S, [0,0]), chart[0]$) for $i \leftarrow$ from 0 to LENGTH(words) do for each state in chart[i] do if INCOMPLETE?(state) and NEXT-CAT(state) is not a part of speech then PREDICTOR(*state*) elseif INCOMPLETE?(state) and NEXT-CAT(*state*) is a part of speech **then** SCANNER(state) else COMPLETER(*state*) end end return(chart)

The Earley Algorithm

```
procedure PREDICTOR((A \rightarrow \alpha \bullet B \beta, [i, j]))
   for each (B \rightarrow \gamma) in GRAMMAR-RULES-FOR(B, grammar) do
         ENOUEUE((B \rightarrow \bullet \gamma, [i, i]), chart[i])
   end
procedure SCANNER((A \rightarrow \alpha \bullet B \beta, [i, j]))
   if B \subset PARTS-OF-SPEECH(word[i]) then
        ENQUEUE((B \rightarrow word[i], [i, i+1]), chart[i+1])
procedure COMPLETER((B \rightarrow \gamma \bullet, [i,k]))
   for each (A \rightarrow \alpha \bullet B \beta, [i, j]) in chart[j] do
         ENQUEUE((A \rightarrow \alpha B \bullet \beta, [i,k]), chart[k])
   end
```

Visualizing the Chart

We will use the grammar to parse the sentence "Book that flight".

Grammar Rules			
$S \rightarrow NP VP$	$VP \rightarrow Verb$		
$S \rightarrow Aux NP VP$	$VP \rightarrow Verb NP$		
S ightarrow VP	$VP \rightarrow Verb \ NP \ PP$		
NP ightarrow Pronoun	$VP \rightarrow Verb PP$		
NP ightarrow Proper-Noun	$VP \rightarrow VP PP$		
NP ightarrow Det Nominal	$PP \rightarrow Preposition NP$		
Nominal \rightarrow Noun	Verb ightarrow book include prefer		
Nominal $ ightarrow$ Nominal Noun	Nominal \rightarrow book flight meal		
Nominal \rightarrow Nominal PP	Det ightarrow that this these		

Visualizing the Chart[0]

state	rule	start/end	reason
S1	$S \rightarrow \bullet NP VP$	[0,0]	Predictor
S2	$S \rightarrow \bullet$ Aux NP VP	[0,0]	Predictor
S 3	$S \rightarrow \bullet VP$	[0,0]	Predictor
S4	$NP \rightarrow \bullet Pronoun$	[0,0]	Predictor
S 5	$NP \rightarrow \bullet Proper-Noun$	[0,0]	Predictor
S 6	$NP \rightarrow \bullet Det Nominal$	[0,0]	Predictor
S7	$VP \rightarrow \bullet Verb$	[0,0]	Predictor
S 8	$VP \rightarrow \bullet Verb NP$	[0,0]	Predictor
S 9	$VP \rightarrow \bullet$ Verb NP PP	[0,0]	Predictor
S10	$VP \rightarrow \bullet Verb PP$	[0,0]	Predictor
S11	$VP \rightarrow \bullet VP PP$	[0,0]	Predictor

Visualizing the Chart[1]

state	rule	start/end	reason
S12	Verb ightarrow book ullet	[0,1]	Scanner
S13	VP ightarrow Verb ullet	[0,1]	Completer
S14	$VP \rightarrow Verb \bullet NP$	[0,1]	Completer
S15	$VP \rightarrow Verb \bullet NP PP$	[0,1]	Completer
S16	$VP \rightarrow Verb \bullet PP$	[0,1]	Completer
S17	$S \rightarrow VP \bullet$	[0,1]	Completer
S18	$VP \rightarrow VP \bullet PP$	[1,1]	Completer
S19	$NP \rightarrow \bullet Pronoun$	[1,1]	Predictor
S20	$NP \rightarrow \bullet Proper-Noun$	[1,1]	Predictor
S21	$NP \rightarrow \bullet Det Nominal$	[1,1]	Predictor
S22	$PP \rightarrow \bullet Prep NP$	[1,1]	Predictor

The PREDICTOR Operator The SCANNER Operator The COMPLETER Operator Visualizing the Chart Comparing Earley and CYK

Visualizing the Chart[2]

state	rule	start/end	reason
S23	$\mathit{Det} ightarrow \mathit{that} ullet$	[1,2]	Scanner
S24	$NP \rightarrow Det \bullet Nominal$	[1,2]	Completer
S25	Nominal → ● Noun	[2,2]	Predictor
S26	Nominal $\rightarrow \bullet$ Nominal Noun	[2,2]	Predictor
S27	Nominal $\rightarrow \bullet$ Nominal PP	[2,2]	Predictor

Visualizing the Chart[3]

state	rule	start/end	reason
S28	Noun $\rightarrow \bullet$ flight	[2,3]	Scanner
S29	Nominal $\rightarrow Noun \bullet$	[2,3]	Completer
S 30	NP ightarrow Det Nominal ullet	[1,3]	Completer
S31	Nominal \rightarrow Nominal • Noun	[2,3]	Completer
S32	Nominal \rightarrow Nominal • PP	[2,3]	Completer
S33	$VP ightarrow Verb \ NP ullet$	[0,3]	Completer
S34	$VP \rightarrow Verb \ NP \bullet \ PP$	[0,3]	Completer
S35	PP ightarrow Prep ullet NP	[3,3]	Predictor
S36	$S \rightarrow VP \bullet$	[0,3]	Completer
S37	Nominal \rightarrow VP • PP	[0,3]	Completer

Parsing the Input

As with CKY we have formulated a recognizer. We can change it to a parser by adding backpointers so that each state knows where it came from.

Chart[1]	S12	Verb ightarrow book ullet	[0,1]	Scanner
Chart[2]	S23	Det $ ightarrow$ that $ullet$	[1,2]	Scanner
Chart[3]	S28	Noun $ ightarrow$ flight $ullet$	[2,3]	Scanner
	S29	Nominal \rightarrow Noun $ullet$	[2,3]	(S28)
	S30	$\textit{NP} \rightarrow \textit{Det Nominal} \bullet$	[1,3]	(S23, S29)
	S33	$VP ightarrow Verb \ NP \ ullet$	[0,3]	(S12, S30)
	S36	$S \rightarrow VP \bullet$	[0,3]	(S33)

The PREDICTOR Operator The SCANNER Operator The COMPLETER Operator Visualizing the Chart Comparing Earley and CYK

Comparing Earley and CYK

- For such a simple example, there seems to be a lot of useless stuff in the chart.
- We are predicting things inconsistent with the input!
- That's the flipside to the CKY problem.

Did we solve ambiguity? Both CKY and Earley will result in multiple S structures for the [0, N] table entry. They efficiently store the sub-parts shared between multiple parses but neither can tell us which one is right.

Clicker Questions

- The CYK parser processes the input string:
 (a) top-down
 (b) bottom-up
 (c) a bit of both
- 2 The Earley parser processes the input string:
 (a) top-down
 (b) bottom-up
 (c) neither, just left-to-right
- A shift reduce parser processes the input string:
 (a) top-down
 (b) bottom-up
 (c) with a stack
- A recursive decent parser process the input string:
 (a) top-down
 (b) bottom-up
 (c) using backtracking

Summary

- The Earley algorithm uses dynamic programming to implement a top-down search strategy.
- Single left to right pass that fills chart with N + 1 entries.
- Dotted rule represents progress in recognizing RHS of rule.
- Algorithm always moves forward, never backtracks to previous chart entry, once it has moved on.
- States are processed using PREDICTOR, COMPLETER, SCANNER operations.

Reading: Same as for Lecture 17 **Next lecture:** statistical parsing or how to solve ambiguity.