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Benefits of Part of Speech Tagging

Can help in determining authorship. Are any two
documents written by the same person ⇒ forensic linguistics.

Can help in speech synthesis and recognition. For
example, say the following out-loud

1 Have you read ’The Wind in the Willows’? (noun)

2 The clock has stopped. Please wind it up. (verb)

3 The students tried to protest. (verb)

4 The students are pleased that their protest was successful.
(noun)
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Corpus Annotation

Annotation: adds information that is not explicit in a corpus,
increases its usefulness (often application-specific).

To annotate a coprus with Part-of-Speech (POS) classes we must
define a tag set – the inventory of labels for marking up a corpus.

Example: part of speech tag sets

1 CLAWS tag (used for BNC); 62 tags;

2 Brown tag (used for Brown corpus); 87 tags;

3 Penn tag set (used for the Penn Treebank); 45 tags.
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POS Tag Sets for English

Category Examples CLAWS Brown Penn
Adjective happy, bad AJ0 JJ JJ
Noun singular woman, book NN1 NN NN
Noun plural women, books NN2 NN NN
Noun proper singular London, Michael NP0 NP NNP
Noun proper plural Finns, Hearts NP0 NPS NNPS
reflexive pro itself, ourselves PNX
plural reflexive pro ourselves, . . . PPLS
Verb past participle given, found VVN VBN VBN
Verb base form give, make VVB VB VB
Verb simple past ate, gave VVD VBD VBD

All words must be assigned at least one tag. Differences in tags
reflects what distinctions are/aren’t drawn.
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Tags and Tokens

In POS-tagged corpora tokens and their POS-tags are usually
given in the form text/tag:

Our/PRP\$ enemies/NNS are/VBP innovative/JJ and/CC
resourceful/JJ ,/, and/CC so/RB are/VB we/PRP ./.
They/PRP never/RB stop/VB thinking/VBG about/IN new/JJ
ways/NNS to/TO harm/VB our/PRP\$ country/NN and/CC
our/PRP\$ people/NN, and/CC neither/DT do/VB we/PRP
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Extent of POS Ambiguity

POS-tagging a large corpus by hand is a lot of work.

We’d prefer to automate but how hard can it be?

Many words may appear in several categories.

But most words appear most of the time in one category.

POS Ambiguity in the Brown corpus

Brown corpus (1M words) has 39,440 different word types:

35340 have only 1 POS tag anywhere in corpus (89.6%)

4100 (10.4%) have 2–7 POS tags

Why does 10.4% POS-tag ambiguity by word type lead to difficulty?
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Extent of POS Ambiguity

Words in a large corpus have a Zipfian distribution.

Many high frequency words have more than one POS tag.

More than 40% of the word tokens are ambiguous.

He wants to/TO go.
He went to/IN the store.

He wants that/DT hat.
It is obvious that/CS he wants a hat.
He wants a hat that/WPS fits.

How about guessing the most common tag for each word?
Will give you 90% accuracy (state of-the-art is 96–98%).
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Clicker Question

What is the difference between word types and tokens?

1 Word types are part of speech tags, tokens are just the words.

2 Word types are the number of times words appear in the
corpus, whereas word tokens are unique occurrences of words
in the corpus.

3 Word types are the vocabulary (what different words are
there), whereas word tokens refer to the frequency of each
word type.

4 Word types and tokens are the same thing.
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Sequence Labeling

Find the best sequence of tags that corresponds to:

Secrertariat is expected to race tomorrow
NNP VBZ VBN TO VB NN
NNP VBZ VBN TO NN NN

t̂n
1 = argmax

tn
1

P(tn
1 |wn

1 )

= argmax
tn
1

P(wn
1 |tn

1 )P(tn
1 )

P(wn
1 ) using Bayes’ rule

= argmax
tn
1

P(wn
1 |tn

1 )P(tn
1 ) denominator does not change
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Sequence Labeling

t̂n
1 = argmax

tn
1

P(wn
1 |tn

1 ) P(tn
1 )

≈
n∏

i=1
P(wi |ti )

n∏
i=1

P(ti |ti−1)

︸ ︷︷ ︸ ︸ ︷︷ ︸
likelihood prior

P(wn
1 |tn

1 ) ≈
n∏

i=1

P(wi |ti )

P(tn
1 ) ≈

n∏
i=1

P(ti |ti−1)
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t̂n
1 ≈ argmax

tn
1

n∏
i=1

P(wi |ti )
n∏

i=1
P(ti |ti−1)

︸ ︷︷ ︸ ︸ ︷︷ ︸
emission probability transition probability

P(wi |ti ) = C(ti ,wi )
C(ti )

P(ti |ti−1) =
C(ti ,ti−1)
C(ti−1)

P(is|VBZ ) = C(VBZ ,is)
C(VBZ) = 10,073

21,627 = .47

P(NN|DT ) = C(DT ,NN)
C(DT ) = 56,509

116,454 = .49
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Hidden Markov Models

A finite automaton is defined by set of states and set of
transitions between states according to input observations

A weighted finite automaton has probabilities or weights on
the arcs

In a Markov chain the input sequence uniquely determines
which states the automaton will go through.

In a Hidden Markov model the sequence of states given
input is hidden, i.e., ambiguous.

In POS-tagging, we observe the input words but not the
POS-tags themselves.
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Definition of Hidden Markov Models

Q = q1, q2 . . . qN A set of N states
A = a11a12 . . . an1 . . . ann a transition probability matrix A,

each aij represents the probability of
moving from state i to state j , s.t.
n∑

j=1
aij = 1 ∀i

O = o1, o2 . . . oT sequence of T observations drawn
from vocabulary V = v1, v2 . . . vV .

B = bi (oT ) Sequence of emission probabilities
expressing probability of ot being gen-
erated from state i .

q0, qF a start state and final state.
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Transition Probabilities
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Emission Probabilities
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Transition and Emission Probabilities

VB TO NN PPPS
<s> .019 .0043 .041 .67
VB .0038 .035 .047 .0070
TO .83 0 .000 0
NN .0040 .016 .087 .0045
PPPS .23 .00079 .001 .00014

I want to race
VB 0 .0093 0 .00012
TO 0 0 .99 0
BB 0 .000054 0 .00057
PPSS .37 0 0 0
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How Do we Search for Best Tag Sequence?

We have defined an HMM, but how do we use it? We are given a
word sequence and must find their corresponding tag sequence.

It is easy to compute the probability of a specific tag sequence:

t̂n
1 ≈

n∏
i=1

P(wi |ti )
n∏

i=1

P(ti |ti−1)

But how do we find most likely tag sequence?

We can do this efficiently using dynamic programming and
the Viterbi algorithm.
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Clicker Question

Given n words and on average T choices, how many tag sequences
do we have to evaluate?

1 |T | tag sequences

2 n tag sequences

3 |T | × n tag sequences

4 |T |n tag sequences
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The Viterbi Algorithm

qend end
q4 NN 0
q3 TO 0
q2 VB 0
q1 PPSS 0
qo start 1.0

<s> I want to race
oo o1 o2 o3 o4

1 Create probability matrix, with one column for each
observation (i.e., word), and one row for each state (i.e., tag).

2 We proceed by filling cells, column by column
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The Viterbi Algorithm

qend end
q4 NN 0 1.0× .041× 0

q3 TO 0 1.0× .0043× 0

q2 VB 0 1.0× .19× 0

q1 PPSS 0 1.0× .67× .37

qo start 1.0

<s> I want to race
oo o1 o2 o3 o4

For each state qj at time t compute

vt(j) =
N

max
i=j

vt−1(i)aijbj(ot)

vt−1(i) is previous Viterbi path probability, aij is transition
probability, and bj(ot) is emission probability
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The Viterbi Algorithm

qend end
q4 NN 0 0 .025× .0012× 0.000054

q3 TO 0 0 .025× .00079× 0

q2 VB 0 0 .025× .23× .0093

q1 PPSS 0 .025 .025× .00014× 0

q0 start 1.0

<s> I want to race
oo o1 o2 o3 o4

For each state qj at time t compute

vt(j) =
N

max
i=j

vt−1(i)aijbj(ot)

vt−1(i) is previous Viterbi path probability, aij is transition
probability, and bj(ot) is state observation likelihood
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The Viterbi Algorithm

qend end
q4 NN 0 0 .000000002 .000053× .047× 0

q3 TO 0 0 0 .000053× .035× .99

q2 VB 0 0 .00053 .000053× .0038× 0

q1 PPSS 0 .025 0 .000053× .0070× 0

q0 start 1.0

<s> I want to race
oo o1 o2 o3 o4

For each state qj at time t compute

vt(j) =
N

max
i=j

vt−1(i)aijbj(ot)

vt−1(i) is previous Viterbi path probability, aij is transition
probability, and bj(ot) is state observation likelihood
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The Viterbi Algorithm

qend end
q4 NN 0 0 .0000000020 .0000018× .00047× .00057

q3 TO 0 0 0 .0000018.0000018×0×0

q2 VB 0 0 .00053 0 .0000018×.83×.00012

q1 PPSS0 .025 0 0 .0000018× 0× 0

q0 start 1.0

<s> I want to race
oo o1 o2 o3 o4

For each state qj at time t compute

vt(j) =
N

max
i=j

vt−1(i)aijbj(ot)

vt−1(i) is previous Viterbi path probability, aij is transition
probability, and bj(ot) is state observation likelihood
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The Viterbi Algorithm

qend end
q4 NN 0 0 .000000002 0 4.8222e-13

q3 TO 0 0 0 .0000018 0

q2 VB 0 0 .00053 0 1.7928e-10

q1 PPSS 0 .025 0 0 0

q0 start 1.0

<s> I want to race
oo o1 o2 o3 o4

For each state qj at time t compute

vt(j) =
N

max
i=j

vt−1(i)aijbj(ot)

vt−1(i) is previous Viterbi path probability, aij is transition
probability, and bj(ot) is state observation likelihood
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Summary

A number of POS tag sets exist for English (e.g. Brown,
CLAWS, Penn).

Automatic POS tagging makes errors because many high
frequency words are part-of-speech ambiguous.

POS-tagging can be performed automatically using Hidden
Markov Models.

Reading: J&M (2nd edition) Chapter 5
NLTK Book: Chapter 5, Categorizing
and Tagging Words

Next lecture: Phrase structure and parsing as search
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