The pumping lemma

Informatics 2A: Lecture 8

John Longley

School of Informatics
University of Edinburgh
jrle@inf.ed.ac.uk

6 October, 2011

1/15

jrl@inf.ed.ac.uk

@ Showing a language isn't regular
e The pumping lemma

© Applying the pumping lemma

2/15

Showing a language isn’t regular

Non-regular languages

We have hinted before that not all languages are regular. E.g.
@ The language {a"b" | n > 0}.
@ The language of all well-matched sequences of brackets (,).

N.B. A sequence x is well-matched if no initial subsequence y
of x contains more ‘)" than '('.

But how do we know these languages aren't regular?

And can we come up with a general technique for proving the
non-regularity of languages?

3/15

Showing a language isn’t regular

The basic intuition: DFAs can’t count!

Consider L = {a"b" | n > 0}. Just suppose, hypothetically, there
were some DFA M with L(M) = L.

Suppose furthermore that M had just processed a”, and some
continuation b™ was to follow.

Intuition: M would need to have counted the number of a's, in
order to know how many b's to expect.

More precisely, let g, denote the state of M after processing a".
Then for any m # n, the states g, g, must be different, since b™
takes us to an accepting state from g,,, but not from g,.

In other words, M would need infinitely many states, one for each
natural number. Contradiction!

4/15

Showing a language isn’t regular

Put slightly differently. ..

Suppose there were some DFA M for L = {a"b" | n > 0}. Then M
would have some finite number of states, say k.

Now consider what happens when we feed M with the string a¥. It
passes through a sequence of k + 1 states (including the initial
state). So there must be some state g that's visited twice or more:

This means the string ak can be decomposed as uvw, where
o u takes M from the initial state to g,
@ v takes M once round the loop from g to g,
o w is whatever is left of a* after uv.
(Note that u and w might be ¢, but v definitely isn't.) 5/15

Showing a language isn’t regular

More generally. ..

If L is any regular language, we can pick some corresponding DFA
M, and it will have some number of states, say k.

Not only must every string of length > k cause a revisited state —
so must every substring of length > k within such a string.

Indeed, consider what happens when we run M on a string
xyz € L, where | y |[> k. There must be at least one state g we
visit twice in the course of processing y:

(There may be other ‘revisited states’ not indicated here.)
6/15

Showing a language isn’t regular

The idea of ‘pumping’

So y can be decomposed as uvw, where
@ xu takes M from the initial state to g,
@ v # ¢ takes M once round the loop from g to g,
@ wz takes M from g to an accepting state.

But now M will be oblivious to whether, or how many times, we go
round the v-loop!

So we can ‘pump in’ as many copies of the substring v as we like,

knowing that we'll still end in an accepting state.
7/15

The pumping lemma

The pumping lemma: official form

The pumping lemma basically summarizes what we've just said.

Pumping Lemma. Suppose L is a regular language. Then L has
the following property.

(P) There exists k > 0 such that for any strings x,y, z
with xyz € L and | y |> k, there exist strings u, v, w such
that y = uvw, v # ¢, and for every i > 0 we have
xuviwz € L.

8/15

The pumping lemma

The pumping lemma: contrapositive form

Since we want to use the pumping lemma to show a language isn’t
regular, we usually apply it in the following equivalent but
back-to-front form.

Suppose L is a language for which the following property holds:

(—P) For all k > 0 such that there exist strings x,y, z
with xyz € L and | y |> k, and for all u,v,w such that
y = uvw and v # ¢, there exists i > 0 we have

xuviwz & L.

Then L is not a regular language.

N.B. The pumping lemma can only be used to show a language
isn't regular. Showing L satisfies (P) doesn't prove L is regular!

To show some language is regular, give a DFA or NFA or regular

expression that defines it.
9/15

The pumping lemma

The pumping lemma: a user's guide

So to show some language L is not regular, it's enough to show
that L satisfies —P.

Note that =P is quite a complex statement: V---4...V.--3....

It's helpful to think in terms of how you would refute an opponent
who claimed to have a DFA for L.

We'll look a simple example first, then offer some advice on the
general pattern of argument.

10/15

Applying the pumping lemma

Example 1

Consider L = {a"b" | n > 0}.

Suppose there were some DFA for L, and it had k states.
(k is chosen by ‘opponent’ — we just have to cope.)

Consider the strings x = ¢, y = ak, z = b¥. Note that xyz € L and
| v |> k as required.
(y is cunningly chosen by ‘us’.)

Suppose now we're given a decomposition of y as uvw with v # e.
(u, v, w chosen by ‘opponent’ — we have to cope.)

Let i = 0 Then uv'w = uw = a’ for some | < k. So
xuviwz = albk & L, and we win!
(i chosen by ‘us’.)

Thus L satisfies =P, so L isn't regular.

11/15

Applying the pumping lemma

Use of pumping lemma: general pattern

@ The opponent proposes a ‘number of states’ k. (That is, he
claims he has a DFA for L, and tells you its number of states.)
You don't get to choose k — you have to cope with what the
opponent throws at you.

@ You respond with a cunning choice of strings x, y, z, which
might depend on k. These must satisfy xyz € L and | y |> k.
Also, y should be chosen to ‘disallow pumping’ ...

@ The opponent picks a decomposition of y as uvw with v # €.
Again, you just have to cope with his choice.

o Finally, you have to choose i (# 1) such that xuv/wz ¢ L.
Here i might depend on all the previous data.

12/15

Applying the pumping lemma

Example 2

Consider L = {a™ | n > 0}.

Suppose there were a DFA for L with k states.

Let x = ak2_k, y = ak z=¢, so Xyz = a< el.

Given any splitting of y as uvw with v # ¢, we have 1 <| v |< k.
So taking i = 2, we have xuvlwz = a" where k2+1 < n < k% + k.

But there are no perfect squares between k? and k? + 2k + 1,
so nisn't a perfect square. Thus xuv?wz & L.

By the pumping lemma, we conclude that L is not regular.

13/15

Applying the pumping lemma

Three clicker questions

For each of the following languages over {a, b}, decide whether
they are regular or not.

Press 1 for regular, 2 for non-regular.

@ Strings with an odd number of a's and an even number of b's.
@ Strings containing more a's than b's.
@ Strings such that (no. of a's) * (no. of b’s) = 6 (mod. 24)

14/15

Applying the pumping lemma

Reading and prospectus

Relevant reading: Kozen chapters 11, 12.

That concludes the part of the course on regular languages.
In some informal sense, you now know ‘everything’ about the
theory of regular languages.

Next time, we start on the next level up in the Chomsky hierarchy:
context-free languages.

15/15

	Showing a language isn't regular
	The pumping lemma
	Applying the pumping lemma

